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ABSTRACT

In this paper we present CLTSA (Counting Fluents Labelled Transi-
tion System Analyser), an extension of LTSA (Labelled Transition
System Analyser) that incorporates counting fluents, a useful mech-
anism to capture properties related to counting events. Counting
fluent temporal logic is a formalism for specifying properties of
event-based systems, which complements the notion of fluent by
the related concept of counting fluent. While fluents allow us to
capture boolean properties of the behaviour of a reactive system,
counting fluents are numerical values, that enumerate event occur-
rences.

The tool supports a superset of FSP (Finite State Processes),
that allows one to define LTL properties involving counting fluents,
which can be model checked on FSP processes. Detailed information
can be found at http://dc.exa.unrc.edu.ar/tools/cltsa.

CCS CONCEPTS

« Theory of computation — Modal and temporal logics; Ver-
ification by model checking; - Software and its engineering
— Specification languages;

KEYWORDS
Model checking, Temporal Logic, Specification and Verification

ACM Reference format:

German Regis, Renzo Degiovanni, Nicolas D’Ippolito, and Nazareno Aguirre.
2017. CLTSA: Labelled Transition System Analyser with Counting Fluent
support. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, Paderborn, Germany, September 4-8, 2017
(ESEC/FSE’17), 5 pages.

https://doi.org/10.1145/3106237.3122828

1 INTRODUCTION

The increasingly rich set of tools and techniques for software anal-
ysis offers unprecedented opportunities for helping software devel-
opers in finding program bugs, and discovering flaws in software
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models [4, 11, 12]. An essential part of these tools and techniques is
the formal specification of software properties. Various formalisms
and approaches have been proposed to specify properties of dif-
ferent kinds of systems. In particular, temporal logic has gained
significant acceptance as a vehicle for specifying properties of soft-
ware systems, most notably parallel and concurrent systems.

Temporal logics are more directly applicable to system property
specification when using a state based specification approach, i.e.,
when one is able to refer to state properties. Given the importance
of event-based formalisms, such as CSP [5], CCS [10] and FSP [9],
some mechanisms have been proposed to capture state properties
in event-based systems, too. Through the notion of event, which is
used as a means to represent components behaviour and interaction
on event-based formalisms, fluents are proposed in [1] in order
to enable the use of temporal logic for specifying properties of
event-based systems. Fluents are propositional variables that allow
one to capture state propositions in these systems, in terms of
activating and deactivating events. Based on the fluent concept
and with the aim of dealing with properties of reactive systems in
which the number of occurrences of certain events is relevant, the
notion of counting fluent was introduced in [13]. As opposed to the
boolean nature of a fluent, a counting fluent represents a numerical
value that enumerates event occurrences in terms of incrementing,
decrementing and resetting events.

Of course, a convenient language for specifying system prop-
erties is not enough: such a language must be accompanied by
powerful tool support. In [13], a prototypical tool was presented to
support counting fluents. Given an FSP model of a reactive system,
the tool allowed one to specify counting fluents that monitored the
behaviour of the system and to use them as part of counting expres-
sions for specifying counting properties. Moreover, the tool could
also model check these properties. Intuitively, given the counting
fluent temporal formula, and the limits for each counting fluent, the
approach of [13] automatically generated a monitoring process to
capture the valuation of the counting expressions, and then reduced
the problem of model checking the counting property to model
checking an “equivalent” propositional temporal property by using
LTSA [9].

In this tool demonstration paper, we present CLTSA (Counting
Fluents Labelled Transition System Analyser), a new tool that im-
plements a direct model checking technique for counting fluents
linear temporal logic, building upon a traditional LTS model verifi-
cation. In contrast with the approach in [13], this new technique
implements an automata representation for counting expressions,
improving the efficiency and scalability of the analysis. In addition,
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as an advantage of the automata representation for counting ex-
pressions, CLTSA supports richer counting properties than those
supported by [13]. For instance, CLTSA allows expressions with
any number of counting fluents and a wide range of arithmetical
operators, including addition, subtraction, multiplication, integer
division and remainder.

Contribution. CLTSA supports: ® Counting fluents definition in
terms of system events. e Specification of LTL properties that in-
volve counting fluents and counting expressions that may involve
a wide range of arithmetical expressions. ® Definition of different
kinds of limits for counting fluents, required by the model check-
ing approach. e An automated model checking algorithm that can
verify a property, produce a counterexample when it is deemed in-
valid, or it can answer that the result is inconclusive when the limits
provided for the counting fluents are not sufficiently large for the
analysis. ® CLTSA enhances the LTSA counterexample trace report
and the trace animator, providing relevant information regarding
counting fluents evaluations.

2 INTRODUCING CLTSA

As in LTSA, the system’s model is described in CLTSA in terms
of the FSP language [9]. In FSP specifications, “~>” denotes event
prefix, “|” denotes choice, and conditions can be expressed by means
of “when” clauses. Processes may be indexed and parameterised,
and can be composed in a sequential “;” or parallel way “| |”.

One of the main features that LTSA provides is that we can
specify temporal properties on the modelled system, and then we
can analyse their validity via model checking. LTSA support FLTL
(Fluent Linear-Time Temporal Logic) for properties specification.
FLTL enriches the traditional LTL logic [7, 8] with propositional
fluents. A propositional fluent FI = (I, T, B), is a propositional
variable that captures states of the system in terms of activating (I)
and deactivating (T) events, starting with a default value B. These
fluents can be used as part of the property formula to be verified.

In CLTSA the properties can be expressed in CFLTL [13], an
extension of FLTL with counting fluent support. As opposed to the
boolean nature of propositional fluents, counting fluents represent
numerical values that enumerate event occurrences in terms of
incrementing, decrementing and resetting events. The syntax of
counting fluents declarations in CLTSA is characterised by the
following grammar:

(CFluentDef) := 'cfluent' (fluent name) '='
' <'(incremental_events_set ) ') (decremental_events_set ) ',
(reset_events_set ) '>''initially ' (initial_value )

Due to their numerical nature, for system’s properties specifi-
cation, counting fluents can be combined to conform a counting
expression, i.e. an arithmetical expression that asserts some state
of counting fluents. The counting expression can be specified ac-
cording to the following grammar:

€= (expr) (rel_op) (expr)
(expr) == (value) | '('(expr) ') | (expr) (arith_op) (expr)

(value) = (intValue) | (countingFluent )
(rel_op) == ==| !=| <|<=|>=|>
(arith_op) == +| —| « | /| %

Regis et al.

As an example, let us consider the Single Lane Bridge Problem
(SLB), a modelling problem introduced in [9], in this case with an
additional constraint. Besides the fact that, due to the bridge’s width,
cars circulating in different directions at the same time must be
forbidden, assume that the bridge has a maximum weight capacity.
Exceeding this capacity is dangerous, so the maximum number of
cars on the bridge must also be controlled.

To address this system analysis, as depicted in the Fig. 1, in the
CLTSA editor, the counting fluent CARS_ON_BRIDGE is declared
to keep track of the number of cars (red or blue) on the bridge. This
value is initially 0, is incremented at each occurrence of an enter
(red or blue car) event, and is decremented at each occurrence of an
exit event. Using CARS_ON_BRIDGE, we can express the weight
safety property of the bridge in a quite natural way, as follows:

assert CAPACITY SAFE = [](CARS ON BRIDGE <= C)

The user can find this and other case studies, mostly presented

in [13], in the > Examples >> CountingFluents >> case] menu.

The user can perform verification of the properties by select-
ing them from the menu. Due to the arithmetic
nature of the counting fluents, and their potential infinite state rep-
resentation, some limits to counting fluents possible values must
be provided, namely the lower (minimum) and upper (maximum)
values that they can take during any system execution. In case
of missing limits declarations, as shown in Fig. 1, a window will
ask for them. These limits can be applied by means of the apply
declaration, using the following syntax:

(CFluentDef) 'apply' ((limit_name) | (CFluentLimitDef) )
"limit ' (limit_name) '=' (CFluentLimitDef)
(CFluentLimitDef) == (['| ' (') (min_value)'. {(max_value) ('1'| ')")

where brackets and parentheses are used to indicate the strict and
non-strict limits, respectively. Notice that the syntax allows one to
define generic limits, with a name, to be applied in one or more
counting fluent definitions.

The distinction between the strict and non-strict limits lies in
the behaviour that our model checking approach adopts when a
counting fluent has reached its maximum (resp. minimum) value
and some incrementing (resp. decrementing) event takes place.

When a strict limit is exceeded, the counting fluent value remains
as is, on the maximum (resp. minimum) value, and the analysis goes
on. On the other hand, when a non-strict limit is exceeded, i.e., a
fluent overflow state has been reached, the current trace is discarded
by our model checking algorithm. This procedure guarantees that,
if the tool finds a counterexample, that trace never reaches an
overflow scenario and the property is reported as invalid.

However, if no counterexample was found, but some overflow
trace has been explored, then the result will be reported as incon-
clusive, in the sense that the property cannot be deemed valid nor
invalid. This situation can take place when the limits defined for
counting fluents are not large enough to produce a fully concrete
counterexample. On the other hand, if no counterexample has been
found, and no overflow trace has been explored, then our approach
can guarantee the validity of the property being analysed.

Fig. 2 shows an example of an invalid property for which a coun-
terexample was found. The original output of LTSA was modified in
order to report the information corresponding to counting fluents
along (counterexample) traces.
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Figure 1: Editor and C.Fluent limits configurator

Another useful feature of the tool is the animator. It provides
a window which can simulate the system execution by selecting
the enabled events on each step ((Check )) Run ) system|). Usually,

the animator is very useful for reproducing counterexample traces.

CLTSA incorporates a fluents report (see Fig. 3) which shows the
values of propositional and counting fluents, as well as the counting
expressions, in each step along the trace being animated.

0@ Replay Animator
red.Lenter Run Ste —
red Zenter |_| p Configure Report...
red.3.enter red.l.enter Fluents
ERROR i Lexit RED.L : True
red-dex BLUE.1 : False
red.2.enter RED.3 : True
BLUE.3 : False
red.zexit RED.2 : True
red.3.enter BLUE.2 : False
red.3.exit
Counting Fluents
blue.l.enter CARS_ON_BRIDGE : 3 [0..10]
blue.Lexit
Counting Expressions
blue.2.enter CARS_ON_BRIDGE<=2 : False ( 3 <=2)
blue.2.exit

Figure 3: Animator window

3 ARCHITECTURAL OVERVIEW

In order to describe the implementation of CLTSA, let us first con-
sider an overview of the LTSA model checking process shown in
Fig. 4. Basically, the technique consists of checking the emptiness
of the synchronous product between the system model M and
the formula negation —¢. In order to use propositional fluents in
the formula specification, as proposed in [1], LTSA generates a
fluent automata for each of them. Intuitively, a fluent automata
is an automata that consists of two states, representing the truth
values of the fluent (true or false), and a set of transitions labelled
with the activating and deactivating events, according the proposi-
tional fluent’s definition. Finally the product with a synchronizer
automata induces that for each step that the system takes the au-
tomaton corresponding to the fluent updates its state accordingly.

Figure 2: Results of a property check

For each step of this process, we highlight (black circled numbers)
the modifications introduced in the development of CLTSA.

Model's Automata

System and Property é .\
Specification

OO [T

) o Valid
:f;:p Q;;:’,Q Counterexample
Property’s Automata

Figure 4: Architectural Overview

G In order to use counting fluents in our specifications, we up-
dated LTSA’s lexer and parser to support the following construc-
tions, whose syntax were presented in Sec.2: limits definitions,
counting fluents definitions and counting expressions as part of LTL
formulas.

e Similar to the approach proposed in [1], for each counting
expression present in the formula to be verified, our model check-
ing approach generates a counting automata that captures the
truth value of the corresponding counting expression. As a simple
example, consider that we have a counting fluent F, defined as:
F =< {a},{b},{c} > initially 0. Moreover, suppose that we have
the counting expression F <= 1 (« in the figure) in the specified
property. If we select [@. . 2] as the strict limits for counting fluent
F, then Fig. 5 shows the counting automata that CLTSA generates
for the counting expression F <= 1.

In case of non-strict limits, we add an overflow state which is
reached through an incrementing (decrementing) event from the
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Figure 5: Counting automata for F <=1.

maximum (minimum) value state of the counting automata. The
overflow state works as a sink state, in the sense that once this
state is reached, then every event that takes place associated to the
counting fluent, will self-transition to the overflow state. Notice that
this state is not a state of acceptance or denial of the corresponding
expression value; from this state only an overflow situation can be
reported.

e As mentioned before, in the presence of non-strict bounds,
our approach can return an inconclusive result. To address this
situation, we modify the model checking algorithms present in
LTSA. LTSA provides different algorithms for safety and liveness
formulas, since the shape of counterexamples will be different in
each case.

Safety properties Safety properties express that “bad things” will
never happen. A counterexample for this kind of property is a
finite trace. After the composition of the automata is generated,
the model checking algorithm looks for a trace that leads us to the
ERROR state, i.e., a counterexample that violates de property. To
tackle the overflow situations in presence of non-strict bounds, we
update the original algorithm by checking that no overflow state
appear in a counterexample trace. Finally, as mentioned before, for
these scenarios we distinguish between these three possible cases
with their corresponding results: i) valid, when no trace to an ERROR
state was found; ii) invalid, when a trace to an ERROR state was
found and no overflow state appears in the trace; iii) inconclusive,
when no counterexample was found, but some overflow state was
explored.

Liveness properties This kind of property expresses that “good
things” will eventually happen. A counterexample for this kind
of property will be an infinite trace, named a lasso trace: a trace
conformed by a prefix and a loop-part, in which a set of events are
repeated within a cycle and some of them are undesired. For this
kind of properties, LSTA searches for strongly connected components
(SCC) in which the property to be analysed does not hold.

In a similar way that for safety properties, to tackle overflow
situations, we update the algorithm by analysing the SCC found
in the verification process to distinguish between three possible
results: i) valid, when no SCC was found; ii) invalid, when an SCC
was found and it does not contain an overflow event; iii) inconclusive,
if no SCC was found, but some overflow state was explored.

e To enhance the report for the model checking process, we
updated the output taking into account the possible inconclusive
outcome. In addition, in case of invalid properties, i.e., when a
counterexample is found, we update the report by providing useful
information regarding the value of propositional fluents, counting
fluents, and counting expressions at each step of the trace.

Regis et al.

4 REMARKS

This tool demonstration paper introduced CLTSA, an extension of
LTSA with counting fluent temporal logic support. CLTSA allows
one to specify and verify LTL properties over reactive systems,
providing us with an intuitive and nature way to capture properties
related to the number of times that certain system events occur.
Due to the potentially infinite size of counting fluents, the user
is required to introduce limits for each counting fluent, in order
to make the model finite. Moreover, in order not to oversimplify
system models and properties regarding counting fluents, different
kinds of limits are allowed, allowing for the model checking process
to return a third possible result: inconclusive.

In comparison with the previous prototype presented in [13],
CLTSA incorporates an automata based representation for counting
expressions, instead of a monitoring process automatically gener-
ated to instrument the model under analysis. In addition, CLTSA
enriches the language of the counting expressions, by supporting
expressions with an arbitrary number of counting fluents and a
wider range of arithmetical operators. In order to produce a more
user friendly report of the results, CLTSA also updates the original
LTSA trace report with the counting expression status present in
the formula to be analysed. Also it incorporates to the Animator the
status of fluents, counting fluents and counting expression values
at each step of the animation. In terms of efficiency and scalability,
it is important to remark that CLTSA was able to efficiently handle
all the case studies addressed in [13]. Moreover, the CLTSA’s model
checking algorithm outperforms that presented in [13], mainly in
those cases where the property to be analysed is complex, like
liveness properties. This is because the automated instrumentation
generated by [13] adds many additional events to the system in
order to capture the counting property, producing a considerable
increase in the state space required by the formulas and models.
Contrary to that approach, in the new automata based implemen-
tation, the increase in complexity only affects the automata of the
formula, which grows with respect to the range of selected limits
for counting fluents. Finally, it is important to remark that CLTSA
has shown a good performance for both verifying the validity of
properties and generating counterexamples.

Several extensions to LSTA were proposed, for instance [2, 6,
14]. In particular, in [6] an extensive set of LTS layout capabilities
was provided for LTSA, which contributes with different layout
algorithms, that allow us to manually edit the visualisation graph,
navigate from state to state, etc. We would like to thank Cédric
Delforge and Charles Pecheur, who kindly allowed us to incorporate
these LTS layout features into CLTSA.

Some CLTSA features currently being developed are: i) Counting
Fluent indexing and Counting Fluent array arithmetical operations
such as array summation. ii) Conditional Counting Fluents: to relate
a counting fluent with some propositional fluent C, in such a way
that the counting fluent values can be updated only when the
propositional fluent C is true.

The tool, all the case studies, and a description of how to repro-
duce the experiments, can be found in http://dc.exa.unrc.edu.ar/
tools/cltsa.


http://dc.exa.unrc.edu.ar/tools/cltsa
http://dc.exa.unrc.edu.ar/tools/cltsa

CLTSA: Labelled Transition System Analyser with Counting Fluent support

REFERENCES

(1]
(2]

(3]
(4]

D. Giannakopoulou and J. Magee, Fluent Model Checking for Event-based Systems,
in Proc. of ESEC/FSE’03, ACM, pp. 257-266, 2003.

N. D’Ippolito, D. Fischbein, M. Chechik, S. Uchitel, MTSA: The Modal Transi-
tion System Analyser, 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2008, L’Aquila, Italy, 2008.

M. Dwyer, G. Avrunin and J. Corbett, Patterns in Property Specifications for Finite-
state Verification, in Proc. of ICSE’99, ACM, pp. 411-420, 1999.

H. Foster, S. Uchitel, J. Magee, J. Kramer, LTSA-WS: a tool for model-based verifica-
tion of web service compositions and choreography, 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, 2006.

C. A. R. Hoare, Communicating sequential processes, Prentice-Hall 1985.

C. Delforge, C. Pecheur http://Ivl.info.ucl.ac.be/Tools/LTSADelforge

Z.Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems -
Specification -, Springer, 1991.

Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems -Safety-,
Springer, 1995.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

[9] J. Magee and J. Kramer, Concurrency: State Models and Java Programs, John Wiley

= =
=S

& Sons, 1999.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

G. Regis, N. Ricci, N. Aguirre, T. S. E. Maibaum, Specifying and Verifying Declara-
tive Fluent Temporal Logic Properties of Workflows, Formal Methods: Foundations
and Applications - 15th Brazilian Symposium, SBMF 2012, Natal, Brazil, 2012.
G. Regis, F. Villar, N. Ricci, Fluent Logic Workflow Analyser: A Tool for The Verifi-
cation of Workflow Properties, Proceedings First Latin American Workshop on
Formal Methods, LAFM 2013, Buenos Aires, Argentina, 2013.

G. Regis, R. Degiovanni, N. D’Ippolito, N. Aguirre, Specifying Event-Based Systems
with a Counting Fluent Temporal Logic, 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Vol. 1, 2015.

P. Rodrigues, E. Lupu, J. Kramer, LTSA-PCA: tool support for compositional reli-
ability analysis, 36th International Conference on Software Engineering, ICSE
2014, Companion Proceedings, Hyderabad, India, 2014.



	Abstract
	1 Introduction
	2 Introducing CLTSA
	3 Architectural Overview
	4 Remarks
	References

