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Abstract—Automated program repair techniques attempt to
fix programs by looking for patches within a search space
of fix candidates. These techniques require a specification of
the program to be repaired, used as an acceptance criterion
for fix candidates, that many times also plays an important
role in guiding some search processes. Most tools use tests as
specifications for this task. This constitutes a risk, since the
incompleteness of tests as specifications may lead one to obtain
spurious repairs, that pass all tests but are in fact incorrect.
This problem has been identified by various researchers, raising
concerns on the quality and validity of program fixes. Still, more
thorough studies have been proposed using different sets of tests
for fix validation, and resorting to manual inspections, showing
that while tools reduce their program fixing rate, they are still
able to repair a significant number of cases.

In this paper, we perform a different analysis of the suitability
of tests as acceptance criteria for automated program fixes, by
checking patches produced by automated repair tools using a
bug-finding tool, as opposed to previous works that used tests
or manual inspections. We develop a number of experiments
in which faulty programs from a known benchmark are fed to
the program repair tools GenProg, Angelix, AutoFix and Nopol,
using test suites of varying quality and extension, including those
accompanying the benchmark. We then check the produced
patches against formal specifications using a bug-finding tool.
Our results show that, in general, automated program repair
tools are significantly more likely to accept a spurious program
fix than producing an actual one, in the studied scenarios.

I. INTRODUCTION

The significant advances in automated analysis have led to
the development of powerful tools to assist software engineers
in software development, greatly contributing to software qual-
ity. Indeed, tools based on model checking, constraint solving,
evolutionary computation and other automated approaches,
are being successfully applied to various aspects of software
development, from requirements specification to verification
and bug finding. Despite the great effort that is put in software
development to detect software problems, in particular through
the use of the above mentioned techniques, many bugs reach
and make it through the deployment phases. This makes
effective software maintenance greatly relevant to the quality
of the software that is produced. Thus, the traditional emphasis
of software analysis techniques, that concentrated in detecting
the existence of defects in software and specifications, has
recently started to broaden up to be applied to automatically
repair software [1], [4], [12], [24].

While the idea of automatic program repair is certainly
appealing, automatically fixing arbitrary program defects is
known to be infeasible. Firstly, many techniques for automat-
ically repairing programs need to produce repair candidates,

often consisting of syntactical modifications on the original
program. Clearly, all program repair candidates cannot be
exhaustively considered, and thus the search space of repair
candidates to consider needs to be somehow limited. Secondly,
for every repair candidate, checking whether the produced
candidate constitutes indeed a repair is an undecidable problem
on its own, and solving it fully automatically is then nec-
essarily incomplete. Moreover, this latter problem requires a
specification of the expected behavior of the program to be
fixed that can be subject to automated analysis, if one wants
the whole repair process to remain automatic. Most automated
repair techniques use partial specifications, given in terms of
a validation test suite, that in some cases is also used to guide
the search for patches.

There is a risk in using tests as specifications, since as
it is well known, their incompleteness makes it possible to
obtain spurious repairs, i.e., programs that seem to solve the
problems of faulty code, but are incorrect despite the fact that
the validation suite is not able to expose such incorrectness.
Nevertheless, various tools report significant success in repair-
ing code using tests as criteria for accepting patches [8]. More
recently, various researchers have observed that automatically
produced patches are likely to overfit test suites used for
their validation, leading tools to produce invalid program fixes
[20], [15]. Then, further checks have been performed, to
analyze more precisely the quality of automatically produced
patches, and consequently the ability of automated program
repair techniques in producing actual fixes. However, these
further checks have usually been performed through manual
inspection, or using extended alternative test suites, leaving
room for still undetected flaws.

In this paper, we perform a study of the suitability of
tests as acceptance criteria for automated program fixes, by
checking patches produced by automated repair tools using a
bug-finding tool, as opposed to previous works that used tests
or manual inspections. We develop a number of experiments
using IntroClass, a known benchmark for program repair
techniques. Faulty programs from this benchmark are used
to feed three search-based and one semantics-based program
repair tools, using test suites of varying quality and exten-
sion, including those accompanying the benchmark. Produced
patches are then complemented with corresponding formal
specifications, given as pre- and post-conditions, and checked
using Pex [22], an automated test generation tool that attempts
to exhaustively cover bounded symbolic paths for the patches.
Our results show that, in general, automated program repair
tools are significantly more likely to accept a spurious program



fix than producing an actual one, in the studied scenarios.

II. AUTOMATIC PROGRAM REPAIR

Automated program repair techniques aim at fixing faulty
programs through the application of transformations that mod-
ify the program’s code. Search-based techniques for automated
program repair receive a faulty program to repair, a specifica-
tion of the program’s expected behavior, and attempt to gener-
ate a patch through the application of syntactic transformations
on the original program that satisfies the provided specification
[1]. Different techniques and tools have been devised for
automated program repair, which can be distinguished on
various aspects such as the programming language or kind
of system they apply to, the syntactic modifications that can
be applied to programs (or, similarly, the fault model a tool
aims to repair), the process to produce the fix candidates
or program patches, how program specifications are captured
(and how these are contrasted against fix candidates), and how
the explosion of fix candidates is tamed.

A crucial aspect of program repair is how program specifica-
tions are captured and provided to the tools. Some approaches,
notably some of the initial ones (e.g., [1], [21]), require formal
specifications in the form of pre- and post-conditions, or log-
ical descriptions provided in some suitable logical formalism.
Many of the latest mainstream approaches, however, use tests
as specifications. These approaches relieve techniques from
the requirement of providing a formal specification accompa-
nying the faulty program, arguing that such specifications are
costly to produce, and are seldom found in software projects.
Tests, on the other hand, are significantly more commonly used
as part of development processes, and thus requiring tests is
clearly less demanding [25], [9].

The partial nature of tests as specifications immediately
leads to validity issues regarding the fixes provided by au-
tomated program repair tools, since a program patch may be
accepted because it passes all tests in the validation suite but
still not be a true program fix (there might still be other test
cases, not present in the validation suite, for which the program
patch fails). This problem, known as overfitting [20], has been
previously identified by various researchers [20], [15], and
several tools are known to produce spurious patches as a result
of their program repair techniques. This problem is handled
differently by different techniques. Some resign the challenge
of producing fixes and aim at producing hints [9]. Others take
into account a notion of quality, and manually compare the
produced patches with fixes provided by human developers
or by other tools [15], [17]. Notice that, even after manual
inspection, subtle defects may be still present in the repairs,
thus leading to accepting a fix that is invalid. We partly study
this issue in this paper.

III. ANALYSIS

In this paper we evaluate 4 tools that use tests as their
patch acceptance criterion. The evaluation is performed on
the IntroClass dataset, which is described in detail in Section
III-A. The dataset contains student-developed solutions for 6

simple problems. The correctness of the student’s solutions
(which usually take under 30 LOC), can be evaluated using
instructor-prepared test suites. Each of the provided solutions
is faulty: at least one test in the corresponding suite fails.

Since our aim is to evaluate the suitability of test-based
patch acceptance criteria, we will introduce some terminology
that will help us better understand the following sections.
Given a faulty routine m, and a test suite T employed as
an acceptance criterion for automated program fixing, a tool-
synthesized version m′ of m that passes all tests in T is called
a patch. A patch may overfit and be correct with respect to
the provided suite, yet be faulty with respect to a different
suite, or more precisely, with respect to its actual expected
program behavior. We may then have correct and incorrect
patches; a correct patch, i.e., one that meets the program’s
expected behavior, will be called a fix. This gives rise to our
first research question.
RQ1: When applying a given program repair tool/technique
on a faulty program, how likely is the tool/technique to provide
a patch, and if a patch is found, how likely is it to be a proper
fix?

Patch correctness is typically determined by manual inspec-
tion. Since manual inspections are error-prone (in fact, the
faulty routines that constitute introClass were all manually
inspected by their corresponding developers, yet they are
faulty), we will resort to automated verification of patches,
in order to determine if they are indeed fixes. We will use
concrete/symbolic execution combined with constraint solving,
to automatically verify produced patches, against their corre-
sponding specifications captured as contracts. More precisely,
we will translate patches into C#, and equip these with pre-
and post-conditions captured using Code Contracts [7]; we
will then search for inputs that violate these assertions via
concrete/symbolic execution and SMT solving, using Pex [22].

To assess the above research question, we need to run
automatic repair tools on faulty programs. As we mentioned,
we consider the IntroClass dataset, so whatever conclusion we
obtain will, in principle, be tied to this specific dataset, and its
characteristics (we further discuss this issue in the threats to
validity section). By focusing on this dataset, we will definitely
get more certainty regarding the following issues:
• overfitting produced by repair tools on the IntroClass

dataset, and
• experimental data on the limitations of manual inspec-

tions in the context of automated program repair (espe-
cially because this benchmark has been used previously
to evaluate various program repair tools).

Notice that when a patch that is not a fix is produced, one
may rightfully consider the problem being on the quality of the
test suite used for patch generation, not necessarily a limitation
of test-based acceptance criteria as a whole, or the program
fixing technique in particular: by providing more/better tests
one may prevent the acceptance of incorrect patches. That is,
overfitting may be considered a limitation of the particular
test suites rather than a limitation of test-based acceptance
criteria. To take into account this issue, for instance, [20]



enriches the test suites provided with the benchmark with
white-box tests that guarantee branch coverage of a correct
variant of the buggy programs. Then, as shown in [20, Fig. 3],
between 40% and 50% of the patches that are produced with
the original suite, are discarded when the additional white-box
suite ensuring branch coverage is considered. Yet the analysis
does not address the following two issues:
• Are the patches passing the additional white-box tests

indeed fixes? And, equally important,
• Would the tool reject more patches by choosing larger

suites?
This leads to our second research question:

RQ2: How does overfitting relate to the thoroughness of the
validation test suites, in program repair techniques?

Thoroughness can be defined in many ways, typically via
testing criteria. Given the vast amount of testing criteria, an
exhaustive analysis is infeasible. Our approach will be to en-
rich the validation test suites, those provided with the dataset,
by adding bounded-exhaustive suites for different bounds. The
rationale here is to attempt to be as thorough as possible, to
avoid overfitting. For each case study, we obtain suites with
approximately 100 tests, and with approximately 1,000 tests
(with two different bounds), for each routine. These suites can
then be assessed according to measures for different testing
criteria. Notice that, as the size of test suites is increased, some
tools and techniques may see their performance affected.

A. The IntroClass Dataset
The IntroClass benchmark is thoroughly discussed in [13].

It contains student-developed C programs for solving 6 simple
problems (that we will describe below) as well as instructor-
provided test suites to assess their correctness. IntroClass has
been used to evaluate a number of automated repair tools [11],
[19], [20], and its simplicity reduces the requirements on tool
scalability. The benchmark is composed of the following:
• Checksum: Given an input string S = c0, . . . ck, this

method computes a checksum character c following the
formula c =

(∑
0≤i<S.length() S.charAt(i)

)
% 64 + ′ ′.

• Digits: Convert an input integer number into a string
holding the number’s digits.

• Grade: Receives 5 floats f1, f2, f3, f4 and score as
inputs. The first four are given in decreasing order
(f1 > f2 > f3 > f4). These 4 values induce 5 intervals
(∞, f1], (f1, f2], (f2, f3], (f3, f4], and (f4,−∞]. A grade
A, B, C, D or F is returned according to the interval
score belongs to.

• Median: Compute the median among 3 integer input
values.

• Smallest: Compute the smallest value among 4 integer
input values.

• Syllables: Compute the number of syllables into which
an input string can be split according to English grammar
(vowels ’a’, ’e’, ’i’, ’o’ and ’u’, as well as the character
’y’, are considered as syllable dividers).

There are two versions of the dataset, the original one
described in [13], whose methods are given in C, and a Java

translation of the original dataset described in [5]. Some of the
programs that result of the translation from C to Java were
not syntactically correct and consequently did not compile.
Other programs saw significant changes in their behavior.
Interestingly, for some programs, the transformation itself
repaired the bug (the C program fails on some inputs, but
the Java version is correct). The latter situation is mostly due
to the different behavior of the non-initialized variables in C
versus Java [5]. These abnormal cases were removed from the
resulting Java dataset, which thus has fewer methods than the
C one.

Because of the automated program repair tools that we
evaluate, that include AutoFix, we need to consider yet another
version of the IntroClass dataset. This new version is the
result of translating the original C dataset into Eiffel. For the
translation, we employed the C2Eiffel tool [23]; moreover,
since AutoFix requires contracts for program fixing, we re-
placed the input/output sentences in the original IntroClass,
which received inputs and produced outputs from/to standard
input/output, to programs that received inputs as parameters,
and produced outputs as return values. We equipped the
resulting programs with the correct contracts for pre- and
post-conditions of each case study. As in the translation from
C to Java, several faulty programs became “correct” as a
result of the translation. These cases have to do with default
values for variables, as for Java, and with how input is
required and output is produced; for instance, faulty cases
that reported output values with accompanying messages in
lowercase, when they were expected to be upper case, are
disregarded since in Eiffel translated programs outputs are
produced as return values. Table I describes, for each dataset,
the number of faulty versions for each method. The size of
their corresponding test suites are only relevant for C and Java,
since in the case of AutoFix, tests are automatically produced
using AutoTest [14] (the tool does not receive user-provided
test suites).

chcksm digits grade med. small. syll. Total
C 69 236 268 232 177 161 1,143
Java 11 75 89 57 52 13 297
Eiffel 69 236 115 195 166 161 942
Suite size 16 16 18 13 16 16 95

TABLE I
DESCRIPTION OF THE IntroClass C, JAVA AND EIFFEL DATASETS.

B. Experimental Setup

In this section we will describe the software and hardware
infrastructure we employed to run the experiments whose
results we will report in Section IV. We also describe the
criteria used to generate the bounded-exhaustive test-suites, as
well as the automated repair tools we will evaluate and their
configurations.

In order to evaluate the subjects from the IntroClass
dataset we consider, besides the instructor-provided suite de-
livered within the dataset, two new bounded-exhaustive suites.



Bounded-exhaustive suites contain all the inputs that can be
generated within user-provided bounds. We chose bounds so
that the resulting suites have approximately 100 tests and 1,000
tests for each method under analysis. This gives origin to two
new suites that we will call S100 and S1,000, whose test inputs
for each problem are characterized below:
• S100checksum = {c0, . . . , ck | 0 ≤ k < 4 ∧ ∀0≤i≤kci ∈
{′a′,′ b′,′ c′}} (120 tests).

• S100digits = {k | − 64 ≤ k ≤ 63} (128 tests).
• S100grade = {(f1, . . . , f4, score) | (∀1≤i≤4fi ∈
{30, 40, 50, 60, 70, 80}) ∧ (f1 > f2 > f3 > f4) ∧ score ∈
{5, 10, 15, 20, . . . , 90}} (285 tests).

• S100median = {(k1, k2, k3)|∀1≤i≤3 − 2 ≤ ki ≤ 2} (125 tests).
• S100smallest = {(k1, k2, k3, k4)|∀1≤i≤4−2 ≤ ki ≤ 1} (256 tests).
• S100syllables = {c0, . . . ck|0 ≤ k < 4∧∀0≤i≤kci ∈ {′a′,′ b′,′ c′}}

(120 tests).
• S1, 000checksum = {c0, . . . , ck | 0 ≤ k < 5 ∧ ∀0≤i≤kci ∈
{′a′,′ b′,′ c′,′ e′}} (1,364 tests).

• S1, 000digits = {k | − 512 ≤ k ≤ 511} (1,024 tests).
• S1, 000grade = {(f1, . . . , f4, score)|(∀1≤i≤4fi ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90}) ∧ (f1 > f2 > f3 >
f4) ∧ score ∈ {0, 5, 10, 15, 20, . . . , 100}} (2,646 tests).

• S1, 000median = {(k1, k2, k3)|∀1≤i≤3−5 ≤ ki ≤ 4} (1,000 tests).
• S1, 000smallest = {(k1, k2, k3, k4)|∀1≤i≤4 − 3 ≤ ki ≤ 2} (1,296

tests).
• S1, 000syllables = {c0, . . . , ck|0 ≤ k < 5 ∧ ∀0≤i≤kci ∈
{′a′,′ b′,′ c′,′ e′}} (1,364 tests).

Notice that from these inputs, actual tests are built using
reference implementations of the methods under repair as an
oracle. Notice also that all the tests in S100 also belong to
S1,000.

Along the experiments we report in this section, we used
PCs with Intel(R) Core(TM) i7-2600 CPU, running at 3.40Ghz
and holding 8GB of RAM. We used GNU/Linux 3.2.0 as the
OS. We set a timeout of 1 hour.

C. Reproducibility

The empirical study we present in this paper involves a
large set of different experiments. These involve 3 different
datasets (versions of IntroClass, as described in the previous
section), configurations for 4 different repair tools accross 3
different languages, 3 different sets of tests for the tools that
receive test suites. Also, all case studies have been equipped
with contracts, translated into C# and verified using Pex. We
make available all these elements for the interested reader to
reproduce our experiments, which can be found in [removed
link due to anonymization]. Instructions to reproduce each
experiment are provided therein.

IV. EXPERIMENTAL RESULTS

In this section we present the evaluation of each of the repair
tools on the generated suites, and from the collected data we
will discuss research questions RQ1–RQ2 in Sections IV-A–
IV-B. Tables II–V summarize the experimental data. Notice
that the number of versions (#V) of methods from IntroClass
on which tools are evaluated do not always match. We will
discuss the reasons in the following paragraphs.

Angelix does not include all the versions in the dataset due
to the following:
• Since Angelix only supports integers and chars as the

return type for methods under repair, versions of the

digits routine cannot be analyzed. Notice that for the
remaining methods, the outputs can be reduced to a single
integer (this is clearly the case for median, smallest and
syllables), or to a single char (clearly the case for grade
and checksum).

• In order to run experiments with Angelix the source code
of each variation has to be instrumented and adapted to
include calls to some macro functions, and to print the
output in a single integer or char. Since in several variants
the errors consist on modifications of the input/output
Strings, which are stripped-out by the instrumentation,
the bugs “fixed themselves”. For instance, if the original
C variant of smallest produces the output “The smallest
number is 5 ” (notice the extra space at the end of
the string), while the expected output was “The smallest
number is 5”, the instrumented method will return the
number 5 (which removes the discrepancy).

• Since IntroClass consists not only of different students
implementations but also different commits/versions of
the implementation of each student, in several cases the
instrumentation resulted in duplicate files.

A similar situation holds for AutoFix. Since string-based
input/output via standard input output is replaced by parame-
ters and return values, various bugs that have to do with how
input/output is reported also “fixed themselves” as a result
of the translation (see previous description of our IntroClass
Eiffel dataset).

Method #V. Suite #Patch. #Fix. %Patch. %Fix.
checksum 11 O 0 0 0% 0%

O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

digits 75 O 4 0 5.3% 0%
O ∪ S100 2 0 2.6% 0%
O ∪ S1,000 2 0 2.6% 0%

grade 89 O 2 2 2.2% 2.2%
O ∪ S100 2 2 2.2% 2.2%
O ∪ S1,000 2 2 2.2% 2.2%

median 57 O 11 4 19% 7%
O ∪ S100 4 4 7% 7%
O ∪ S1,000 4 4 7% 7%

smallest 52 O 12 0 23% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

syllables 13 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

TABLE II
REPAIR STATISTICS FOR THE NOPOL AUTOMATED REPAIR TOOL.

A. Research Question 1

This research question addresses overfitting, a well-known
limitation of automatic program repair approaches that use test
suites as the validation mechanism. The use of patch validation
techniques based on human inspections or comparisons with
developer patches (or even accepting patches as fixes without
further discussion), has not allowed the community the identify
the whole extent of this problem. For example, paper [10]



Method #V. Suite #Patch. #Fix. %Patch. %Fix.
checksum 69 O 2 0 2.90% 0.00%

O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

digits 236 O 33 0 13.98% 0.00%
O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

grade 268 O 4 2 1.49% 0.75%
O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

median 232 O 124 14 53.45% 6.03%
O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

smallest 177 O 115 2 64.97% 1.13%
O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

syllables 161 O 3 0 1.81% 0.00%
O ∪ S100 0 0 0.00% 0.00%
O ∪ S1,000 0 0 0.00% 0.00%

TABLE III
REPAIR STATISTICS FOR THE GENPROG AUTOMATIC REPAIR TOOL.

Method #V. Suite #Patch. #Fix. %Patch. %Fix.
checksum 69 5 min 4 0 5.79% 0%

10 min 4 0 5.79% 0%
20 min 4 0 5.79% 0%

digits 236 5 min 0 0 0% 0%
10 min 0 0 0% 0%
20 min 0 0 0% 0%

grade 115 5 min 0 0 0% 0%
10 min 0 0 0% 0%
20 min 0 0 0% 0%

median 195 5 min 0 0 0% 0%
10 min 0 0 0% 0%
20 min 0 0 0% 0%

smallest 166 5 min 0 0 0% 0%
10 min 0 0 0% 0%
20 min 0 0 0% 0%

syllables 161 5 min 0 0 0% 0%
10 min 0 0 0% 0%
20 min 0 0 0% 0%

TABLE IV
REPAIR STATISTICS FOR THE AUTOFIX AUTOMATIC REPAIR TOOL.

Method #V. Suite #Patch. #Fix. %Patch. %Fix.
checksum 34 O 0 0 0% 0%

O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

grade 47 O 11 10 23.40% 21.27%
O ∪ S100 11 8 23.40% 17.02%
O ∪ S1,000 0 0 0% 0%

median 57 O 39 7 68.42% 12.28%
O ∪ S100 8 6 14.03% 10.52%
O ∪ S1,000 2 1 3.50% 1.75%

smallest 48 O 31 0 64.58% 0%
O ∪ S100 9 9 18.75% 18.75%
O ∪ S1,000 0 0 0% 0%

syllables 46 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

TABLE V
REPAIR STATISTICS FOR THE ANGELIX AUTOMATIC REPAIR TOOL.

includes the table we reproduce in Fig. 1. The table gives

Fig. 1. Performance of GenProg (and other tools) on the IntroClass dataset,
as reported in [10].

the erroneous impression that 287 out of 778 bugs were fixed
(36.8%). The paper actually analyzes this in more detail and by
using independent test suites to validate the generated patches,
it claims GenProg’s patches pass 68.7% of independent tests,
giving the non-expert reader the impression the produced
patches were of good quality. Actually, as our experiments
reported in Table III show, only 18 out of 1,143 faults were
correctly fixed (which gives a fixing ratio of 1.57%), well
below the results presented in [10]. Strikingly, of the few fixes
produced by GenProg, an important percentage (8 out of 18)
fix errors on the Strings storing the inputs and outputs (10 out
of 18 repair faults on a program’s logic).

We have obtained similar results for the other tools under
analysis. Angelix patches 111 faults out of 232 program
variants (a ratio of 47.84%), yet only 41 patches are fixes
(the ratio reduces to 17.67%). The remaining patches were
discarded with the aid of Pex. Nopol patched 29 out of
297 versions (9%), using the evaluation test suite. Upon
verification with Pex, the number of fixes is 6 (2%). AutoFix
uses contracts (which we provided) in order to automatically
(and randomly) generate the evaluation suite. When a patch is
produced, AutoFix validates the adequacy of the patch by with
a randomly generated suite. AutoFix then produced patches
for the great majority of faulty routines, but itself showed that
most of these were inadequate, and overall reported only 2
patches (which were invalid fixes).

As previously discussed in the beginning of Section III,
these unsatisfactory results might be due to the low quality of
the validation test suite. Yet, it is worth emphasizing, that the
IntroClass dataset was developed to be used in program repair,
and the community has vouched for its quality by publishing
the benchmark and using the benchmark in their research.

B. Research Question 2

This research question relates to the impact of more thor-
ough validation suites on overfitting, as well as on the quality
of the produced patches. Table II shows that Nopol profits
from larger suites in order to reduce overfitting significantly.



It suffices to consider suite O ∪ S100 to substantially reduce
overfitting. The number of spurious patches is reduced from
29 to 8, out of which 6 are fixes. Unfortunately, the number
of fixes remains low. This shows that Nopol, when fed with a
good quality evaluation suite, is able to produce (a few) good
quality fixes. GenProg, on the other hand, cannot cope with
suites S100 and S1,000, and exceeds the allotted time in all
cases (see Table VI). This is an important limitation: small
validation suites produce significant overfitting, and large
validation suites deem GenProg useless. Further experiments
are required in order to determine validation suite size limits
within which GenProg may show progress. Angelix (see Table
V) sees its overfitting reduced. The reduction can be seen for
instance in methods median and smallest, where overfitting
is significantly reduced. Unfortunately, this happens at the
expense of the effectiveness of Angelix: significantly fewer
fixes are produced. Since AutoFix generates the evaluation
suites, rather than providing larger suites we extend the test
generation time. AutoFix does not have a good performance
on this dataset.

Nopol GenProg Angelix
O 8 52 16
O ∪ S100 6 1,143 48
O ∪ S1,000 6 1,143 122

TABLE VI
NUMBER OF TIMEOUTS REACHED BY TOOL AND VALIDATION SUITE.

V. THREATS TO VALIDITY

In this paper we focused on the IntroClass dataset. There-
fore, the conclusions we draw only apply to this dataset and,
more precisely, to the way in which the selected automated
repair tools are able to handle IntroClass. Nevertheless, we
believe this dataset is particularly adequate to stress some
of the points we make in the paper. Particularly, considering
small methods that can be easily specified in formal behavioral
specification languages such as Code Contracts [6] or JML
[2], allow us to determine if patches are indeed fixes or are
spurious fix candidates. This is a problem that is usually over-
looked in the literature: either patches are accepted as fixes (no
further study on the quality of patches is made) [20], or they
are subject to human inspection (which we consider severely
error-prone), or are compared against developer fixes retrieved
from the project repository [18] (which, as pointed out in [20],
may show that automated repair tools and developers overfit
in a similar way).

Also, we used the repair tools to the best of our possibilities.
This is complex in itself because research tools usually have
usability limitations and are not robust enough. In all cases
we consulted corresponding tool developers in order to make
sure we were using the tools with the right parameters, and
reported a number of bugs that in some cases were fixed in
time for us to run experiments with the fixed versions. The
reproducibility package includes all the settings we used.

The results reported only apply to the studied tools. Other
tools might behave in a substantially different way. We at-
tempted to conduct this study on a wider class of tools, yet
some tools were not available even for academic use (for
instance PAR [12]), while other tools had usability limitations
that prevented us from running them even on this simple
dataset (this was the case for instance with SPR [15]).

VI. RELATED WORK

Various tools for program repair that employ testing as ac-
ceptance criteria for program fixes have been shown to produce
spurious (incorrect) repairs. Paper [19] shows that GenProg
and other tools overfit patches to the provided acceptance
suites. They do so by showing that third-party generated suites
reject the produced patches. Since several tools (particularly
GenProg) use suites to guide the patch generation process, [19]
actually shows that the original suites are not good enough.
We go one step further and show that even considering more
comprehensive suites the performance of the repair tools is
only partially improved: fewer overfits are produced, but no
new fixes. This supports the experience by the authors of [19],
and generalizes it to other tools as well:

“Our analysis substantially changed our under-
standing of the capabilities of the analyzed auto-
matic patch generation systems. It is now clear that
GenProg, RSRepair, and AE are overwhelmingly
less capable of generating meaningful patches than
we initially understood from reading the relevant
papers.”

The overfitting problem is also addressed in [20], where the
original test suite is extended with a white-box one, automati-
cally generated using the symbolic execution engine KLEE
[3]. Research question 2 in [20] analyzes the relationship
between test suite coverage and overfitting, a problem we also
study in this paper. Their analysis proceeds by considering
subsets of the given suite, and showing this leads to even more
overfitted patches. Rather than taking subsets of the original
suite, we go the other way around and extend the original
suite with a substantial amount of new tests. This allows us
to reach to conclusions that exceed [20], as for instance the
fact that, while overfitting decreases, the fixing ratio remains
very low. Also, we analyze the impact of larger suites on tool
performance, which cannot be correctly addressed by using
small suites.

Long and Rinard [16] also study the overfitting problem but
from the perspective of the tools search space. They conclude
that many tools show poor performance because their search
space contains significantly fewer fixes than patches, and in
some cases, the patch generation process employed produces
a search space that does not contain any fixes.

VII. CONCLUSIONS AND FURTHER WORK

The significant advances in automated program analysis
have enabled the development of powerful tools for assisting
developers in various tasks, such as test case generation, pro-
gram verification, and fault localization. The great amount of



effort that software maintenance demands is turning the focus
of automated analysis into automatically fixing programs, and
a wide variety of tools for automated program repair have
been developed in the last few years. The mainstream of
these tools, as we have analyzed in this paper, concentrate in
using tests as specifications, since tests are more often found
in software projects, compared to more sophisticated formal
specifications, and their evaluation scales better than the anal-
ysis of formal specifications using more thorough techniques.
While several researchers have acknowledged the problem of
using inherently partial specifications based on tests to capture
expected program behavior, the more detailed analyses that
have been proposed consisted in using larger test suites, or
perform manual inspections, in order to assess more precisely
the effectiveness of automated program repair techniques, and
the severity of the so called test suite overfitting patches [20].

Our approach in this paper has been to empirically studying
the suitability of tests as fix acceptance criteria in the context
of automated program repair, by checking produced patches
using an automatic bug-finding tool, as opposed to previous
works that used tests or manual inspections. We believe
that previous approaches to analyze overfitting have failed to
demonstrate the criticality of invalid patches overfitting test
suites. Our results show that the percentage of valid fixes that
state-of-the-art program repair tools, that use tests as accep-
tance criteria, are able to provide is significantly lower than the
estimations of previous assessments, e.g., [20], even in simple
examples such as the ones analyzed in this paper. Moreover,
increasing the number of tests reduces the number of spurious
fixes but does not contribute to generating more fixes, i.e,
it does not improve these tools’ effectiveness; instead, such
increases make tools most often exhaust resources without
producing patches.

Some conclusions can be drawn from these results. While
weaker or lighter weight specifications, e.g., based on tests,
have been successful in improving the applicability of auto-
mated analyses, as it has been shown in the contexts of test
generation, bug finding, fault localization and other techniques,
this does not seem to be the case in the context of automated
program repair. Indeed, as our results show, using tests as
specifications makes it significantly more likely to obtain
invalid patches (that pass all tests) than actual fixes. This result
may imply that automated program repair calls for stronger
specifications, or at least significantly larger sets of tests cases,
than those typically used by repair tools, with the implied
necessity for novel techniques that are able to handle such
large test sets.

Finally, this work opens various lines for further work.
An obvious one consists in auditing patches reported in
the literature, by performing an automated evaluation as the
one performed in this paper. This is not a simple task in
many cases, since it demands understanding the contexts of
the repairs, and formally capturing the expected behavior of
repaired programs.
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