
Training Binary Classifiers as Data Structure
Invariants

Facundo Molina∗†, Renzo Degiovanni§, Pablo Ponzio∗†, Germán Regis∗, Nazareno Aguirre∗†, Marcelo Frias†‡
∗Department of Computer Science, FCEFQyN, University of Rio Cuarto, Argentina
†National Council for Scientific and Technical Research (CONICET), Argentina

‡Department of Software Engineering, Buenos Aires Institute of Technology, Argentina
§SnT, University of Luxembourg, Luxembourg

Abstract—We present a technique to distinguish valid from
invalid data structure objects. The technique is based on building
an artificial neural network, more precisely a binary classifier,
and training it to identify valid and invalid instances of a
data structure. The obtained classifier can then be used in
place of the data structure’s invariant, in order to attempt
to identify (in)correct behaviors in programs manipulating the
structure. In order to produce the valid objects to train the
network, an assumed-correct set of object building routines is
randomly executed. Invalid instances are produced by generating
values for object fields that “break” the collected valid values,
i.e., that assign values to object fields that have not been
observed as feasible in the assumed-correct executions that led
to the collected valid instances. We experimentally assess this
approach, over a benchmark of data structures. We show that this
learning technique produces classifiers that achieve significantly
better accuracy in classifying valid/invalid objects compared to a
technique for dynamic invariant detection, and leads to improved
bug finding.

I. INTRODUCTION

Given the current advances in automated program analysis,
it is now possible to efficiently produce large sets of pro-
gram inputs, as well as examining very large sets of pro-
gram executions [8], [14], [29], [30], but effectively deciding
whether the behavior of software is correct or not remains a
problem in this context, that mainly depends on the provi-
sion of software specifications (i.e., specified oracles in the
terminology of [6]). Various researchers have acknowledged
this issue, and developed techniques that are able to derive
specifications that are implicit in the software being assessed.
Examples of techniques that derive specifications implicit in
code are Daikon [13], JWalk [38], and related tools [10],
[37]. Daikon produces a set of candidate properties from a
program definition, and infers likely invariants by observing
program executions, and checking which of the candidate
properties were not “falsified” (violated) by any execution
[13]. JWalk also infers properties from program executions,
but it does so by interacting with the user to confirm “learned”
observations, to incrementally produce a test oracle. While
both tools are very powerful, they have limitations. Daikon is
limited to relatively simple program properties, and complex
structural constraints such as acyclicity are beyond the scope

This work was partially supported by ANPCyT PICT 2015-2341, 2015-
0586, 2015-2088, 2016-1384, 2017-1979, 2017-2622; and by the IN-
TER/ANR/18/12632675/SATOCROSS.

of the technique [13]. JWalk also shares this limitation, and
the learned oracles are more “scenario-specific”, i.e., closer to
test assertions, than those produced by Daikon [38].

In this paper, we deal with the specification inference
problem, in a way similar in motivation to techniques like
Daikon and JWalk, but targeting object validity classifiers
for complex objects, like class invariants [25], [22] for data
structures. Our technique differs from the mentioned ones
in several respects. Firstly, it is based on the use of neural
networks [34] for learning classifiers from valid and invalid
objects, obtained from program executions. This implies that
learned classifiers are not formed by explicit constraints that
the user can inspect, as opposed to traditional class invariants;
but at the same time, our classifiers are able to recognize more
complex data representation properties, in particular structural
properties of heap-allocated linked data, that other techniques
cannot handle. Secondly, we concentrate on object classifiers
for bug detection, so our aim is to produce classifiers that
tend to “over-approximate” data structure invariants, i.e., that
identify invalid objects with high precision and recall. Thirdly,
as opposed to other techniques that infer properties from
dynamic information, our approach requires inferring such
properties from positive as well as negative cases (notice that
both Daikon and JWalk only consider positive cases, since
they explore executions of supposedly correct software to infer
likely program properties). Positive cases are those that the
classifying function we want to learn should satisfy, while
negative ones are invalid instances, i.e., objects for which the
classifier should return false. To produce positive cases, we
assume correct a set of object builders, e.g., constructor and
insertion routines, and use these to produce programs that
build valid instances of the data structure of interest. This
is a standard approach in various contexts, in particular in
some program verification and test generation techniques [28],
[24], [20] (Daikon and JWalk in essence also work under this
assumption). On the other hand, negative inputs are produced
as follows. As valid instances are generated, the observed
extensions of class fields, composed of all observed values
for each field, are collected; then, invalid instances are gen-
erated by exploiting these field extensions, by producing new
instances in which a field is given a value that is either outside
the corresponding field extension (and thus guaranteeing that
is indeed a new object), or within the extension, but whose



value has not been seen in combination with the rest of the
instance being altered, within the valid ones.

We evaluate our learning approach in several ways. First,
we assess the adequacy of our approach to generate invalid
objects, analyzing how many of our assumed-invalid produced
instances are indeed invalid (violate a provided invariant).
Second, we take a benchmark of data structures for which
class invariants and object builders (constructors and insertion
routines) are provided; we generate object classifiers using
the provided builders, and evaluate their precision and recall
against the corresponding invariants on valid and invalid in-
puts, as is customary in the context of automated learning [34].
In this context, we compare our technique with Daikon [13], a
tool for dynamic invariant discovery. Finally, we also compare
our object classifiers with invariants produced by Daikon, in
bug finding through test generation, for a number of case
studies involving data structures, taken from the literature:
schedule from the SIR repository [12], an implementa-
tion of n-ary trees in the ANTLR parser generator, a red-
black tree implementation of integer sets introduced in [42],
binary search trees and binomial heaps from the evaluation
performed in [14], and fibonacci heaps from the graphmaker
library [1]. Our experiments show that our mechanism for
producing invalid inputs is effective, and that the learned
classifiers achieve significantly better accuracy in identifying
valid/invalid instances, compared to Daikon (high precision
and recall both in negative and positive cases). Moreover,
learned classifiers allow a test generation tool to catch bugs,
if classifiers are used in place of invariants, that the same tool
cannot detect if the invariants produced by Daikon are directly
used instead, indicating that learned classifiers are not trivial.

II. BACKGROUND

A. Class Invariants

One of the keys of object orientation is the emphasis that
this programming paradigm puts into data abstraction [22].
Indeed, the concept of class is a useful, direct mechanism to
define new datatypes, that extend our programming language’s
set of predefined types with custom ones that allow us to
better capture or deal with concepts from a particular problem
domain. A class defines the type of a set of objects, whose
internal representation is given by the fields that are part of the
class definition. This implementation of a new data abstraction
in terms of provided data structures is often accompanied by
a number of assumptions on how the data structure should
be manipulated, that capture the intention of the developer
in his chosen representation. These assumptions are often
implicit, since they are not a necessary part of the definition
of the data representation, in most programming languages
[22]. Consider, as an example, a representation of sequences
of integers, implemented using heap-allocated singly-linked
lists. The classes involved in this data abstraction are shown in
Figure 1. Clearly, solely from the class’s fields one cannot infer
the intention of the developer in the representation. Whether
these lists are going to be arranged cyclicly, acyclicly, with or
without sentinel node, with reserved nodes for some special

public class SinglyLinkedList {
private Node head;
private int size;
...

}

public class Node {
private int value;
private Node next;
...

}
Fig. 1. Java classes for singly linked lists.

L0

N0

0

size: 0

head

L0

N0

0

size: 1

head

2

N1

L0

N0

0

size: 1

head

1

N1

L0

N0

0

size: 2

head

2

N1 N2

1

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 3

head

2

N1 N2

2

N3

2

L0

N0

0

size: 1

head

1

N1

Fig. 2. Valid acyclic singly linked lists with dummy node.

information, etc., are all issues that are not an explicit part
of the class’s internal definition, although, of course, one may
infer such information from how the internal representation is
used by the methods of the class.

A class invariant [25], or representation invariant [22],
is a predicate inv that, given an object o of class C, states
whether o is a valid representation of the concept that C
captures or not. Equivalently, inv can be described as a boolean
classifying function that decides whether an object o satisfies
the representation assumptions in the implementation of C.
For instance, assume that the programmer’s intention with
singly linked lists is to represent sequences of integers using
acyclic linked lists, with a dummy (sentinel) node [23], where
size must hold the number of elements in the sequence,
i.e., it must coincide with the number of non-dummy nodes
in the list. Samples of valid lists, under this assumption, are
shown in Figure 2. The invariant for SinglyLinkedList
should then check precisely the above constraint, i.e., it must
be satisfied by all instances in Fig. 2, and must not hold for,
say, cyclic lists, lists where head is null, or where the dummy
node has a value different from 0, or where the size field
does not hold the number of non-dummy nodes in the list.

Class invariants can be captured using different languages.
The Eiffel programming language [26], in particular, includes



public boolean repOK() {
if (this.head==null) return false;
if (this.head.value!=0) return false;
int expectedSize = this.size+1;
int currNode = this.head;
while (expectedSize>0 && currNode!=null) {

expectedSize--;
currNode = currNode.next;

}
return (expectedSize==0 && currNode==null);

}
Fig. 3. Java invariant for acyclic singly linked lists.

built-in support for expressing class invariants as assertions
under a specific invariant clause. Other languages support
design-by-contract [25] and assertions, invariants among them,
via special languages and libraries, such as JML [9] for Java
and Code Contracts [5] for .NET. Languages such as Alloy
[17] have also been employed to express class invariants, as
done, e.g., in [19]. Finally, various programming methodolo-
gies (e.g., [22]) and analysis tools (e.g., [29], [8]) can exploit
class invariants expressed as Java predicates, i.e., via boolean
methods that check internal object consistency. Figure 3 shows
the class invariant for our singly linked list example, expressed
as a Java predicate.

In this paper, we will be capturing close approximations
of class invariants for data structures through artificial neural
networks, that, as a consequence, will not be formed by
explicit constraints, as in the example in Fig. 3.

B. Field Extensions

Various tools for program analysis that employ SAT solving
as underlying technology adopt a relational program state
semantics (e.g., [11], [14]). In this semantics, a field f at a
given program state is interpreted as the set of pairs 〈id, v〉,
relating object identifier id (representing a unique reference to
an object o in the heap) with the value v of the field in the
corresponding object at that state (i.e., o.f = v in the state).
Then, each program state corresponds to a set of (functional)
binary relations, one per field of the classes involved in the
program. For example, fields head and next of a program
state containing the singly linked list at the top right of Fig. 2
is represented by the following relations:

head = {〈L0,N0〉}
next = {〈N0,N1〉, 〈N1,N2〉, 〈N2,N3〉, 〈N3, null〉}

Notice that in the lists in Fig. 2, we have consistently
identified the objects involved in each example. Although
in this example it is not evident, due to the linear nature
of the structure, we choose to identify each object by the
order in which it is visited in a breadth-first traversal of
the corresponding structure, using different identifier sets for
different classes (Li for lists, Ni for nodes, etc.). Adopting
this notion of object identifier allows us to have a canoni-
cal (isomorphism-free [18]) representation for each structure
shape (a similar symmetry breaking approach is also present
in other approaches, e.g., [8]).

The notion of field extension is associated with a set
of objects or program states. It essentially corresponds to
joining the above-described relational interpretation of fields,
for various objects or program states. For instance, for the set
of lists in Fig. 2, the extensions for fields head and next
are the following:

head = {〈L0,N0〉}
next = {〈N0,N1〉, 〈N0, null〉, 〈N1,N2〉, 〈N1, null〉,

〈N2,N3〉, 〈N2, null〉, 〈N3, null〉}

This notion of field extension is related to the concept of
(upper) bound in KodKod [39], used with the purpose of
optimizing the relational representation of fields in Alloy
analyses. Technically, field extensions are partial bounds, in
the KodKod sense.

When field extensions are built from valid objects, they
capture the set of values for fields that have been identified
as being feasible, in the sense that at least one observed
structure admits each value in the corresponding extension. We
will use these extensions to attempt to build invalid objects,
e.g., considering pairs that are not in field extensions. This
demands defining a complement for the field extensions, for
which we have to consider domains and codomains for these
relations. This is typically achieved in the context of bounded
analysis by a notion of scope, in the sense of [17]. The scope,
often simplified as a number k, defines a maximum number of
objects for each class Ci, and finite ranges for basic datatypes
(usually as a function of k). For a given scope k, the set of
all possible structures or instances is composed of all possible
assignments of values within the scope, for fields of the scope’s
objects, respecting the fields’ types, and thus provides us with
a notion of universe for the field extensions. For instance, if
the scope for our analysis is 1 list, up to 5 nodes, size in the
range 0..5 and values in the range 1..5, then pair 〈N3,N4〉 is
in the complement of the extension of next, whereas if we
instead consider up to 4 nodes, it is not.

C. Feed-Forward Artificial Neural Networks

Artificial Neural Networks (ANNs) are a state-of-the-art
technique underlying many machine learning problems. These
algorithms offer a number of advantages, including their
remarkable ability to implicitly detect complex nonlinear
relationships in data, that are otherwise very complex to
be noticed. An ANN is composed of a group of different
nodes, called neurons, connected by directed weighted links.
Each neuron is a simple computational unit that computes
a weighted sum of its inputs, and then applies an activation
function g to produce an output, that will be an input of another
neuron.

Neurons can be disposed respecting certain network ar-
chitectures. In particular, in a feed-forward neural network,
neurons are typically organized in layers. Each neuron in a
layer has a link to each neuron of the next layer, forming a
directed acyclic graph. The first layer is the input layer, and its
neurons receive a single value as an input, and simply replicate
the received value through their multiple outputs, to the next
layer. The final layer is the output layer and its neurons



produce the output of the network computation. In addition
to these two layers there can be any number of intermediate
layers, called hidden layers. Often, neural networks will have
one hidden layer, since one layer is enough to approximate
many continuous functions [34].

The behavior of a neural network can be dynamically
altered, by changing the weights associated with the links in
the network, or by modifying some of the neural network so-
called hyperparameters, such as the number of neurons in the
hidden layer. Assume that we want an artificial neural network
to approximate a function f , and that we can characterize the
inputs of f as a vector of values (to be fed in the input layer).
Provided that one has a set of inputs for which the desired
output is known (i.e., a set of known input-output pairs for
f ), one can train an artificial neural network to approximate
function f , by analyzing the difference between the expected
output and the output obtained from the network for a known
input, and producing (slight) changes to the weights so that, if
the network would be fed with the same input again, its output
would be “closer” to the expected output [34] (a mechanism
that is often employed for this task is backpropagation). This
approach is known as supervised learning, and when the
output has only two possible values, it is a binary classification
problem. The problem we deal with in this paper, namely the
approximation of a class invariant to classify valid vs. invalid
data structure objects, clearly falls in the category of binary
classification: we want to learn a function f that sends each
valid instance to true, and each invalid instance to false. We
will then need both valid and invalid instances, to appropriately
train a neural network to learn a class invariant. Section IV
describes the details of our technique.

III. AN ILLUSTRATING EXAMPLE

Let us provide an overview of our approach, through an
illustrating example. Consider the Java implementation of
sequences of integers, over singly linked lists, discussed earlier
in this paper. We would like to check that this list imple-
mentation behaves as expected. This includes guaranteeing
that all public constructors in SinglyLinkedList build
objects that satisfy the previously stated class invariant [22],
and public methods in the class (that may include various
methods for element insertion, deletion and retrieval) preserve
this invariant. That is, they all maintain acyclicity of the list,
with its number of nodes from head.next coinciding with
the value of size, etc. If we had this invariant formally
specified, we may check that it is indeed preserved with the aid
of some automated analysis tools, e.g., some run-time assertion
checker as that accompanying the JML toolset [9], or a test
generation tool like Randoop [29]. But getting these invariants
right, and specifying them in some suitable language, even
if the language is the same programming language of the
program implementation, is difficult, and time consuming, and
one does not always have such invariants available.

We would then like to approximate a class invariant inv :
C → Bool using a neural network, from the implementation
of C. In order to do so, we need to train the neural network

L0

N0

1

size: 0

head

L0

N0

1

size: 1

head

2

N1

L0

N0

0

size: 1

head

L0

size: 2

head

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 3

head

2

N1 N2

2

N3

1

L0

N0

0

size: 1

head

1

N1

Fig. 4. Potentially invalid list structures, built by breaking field extensions.

with a sample for which we know the correct output. In
other words, we need to train the neural network with a set
of valid instances, i.e., objects that satisfy the invariant (or,
equivalently, for which the invariant should return true), as
well as a set of invalid instances, i.e., objects that do not satisfy
the invariant (for which the invariant should return false). In
order to do so, we will ask the user to provide a subset of the
class’s methods, that will be used as assumed-correct builders,
i.e., as methods that allow us to build correct instances. For
instance, in our example the user may trust the implementation
of the constructor and the insertion routine, and thus all objects
produced with these methods are assumed correct. Using these
builders we can construct assumed-correct instances, by using,
e.g., an automated test generation tool such as Randoop. A
particular set of valid instances that we may obtain from this
process could be the objects in Fig. 2.

Building invalid instances is more difficult. We may ask the
user to manually provide such cases, but the number of objects
necessary to appropriately train the network would be large,
and thus this approach would seriously limit the efficacy of
the approach. We may also ask the user to provide methods to
build incorrect objects, but this would mean extra work (it is
not something that the user has already at hand), and providing
such methods is not, in principle, easy to do. Instead, our
approach is based on the use of field extensions. We proceed as
follows. We have already run some input generation tool using
the builders for some reasonable amount of time, and have
obtained a set of valid objects of class SinglyLinkedList.
From these objects we can compute the field extensions for
each field of the data structure. The extensions for head and
next are shown in the previous section; the extensions for
size and value are the following:

size = {〈L0, 0〉, 〈L0, 1〉, 〈L0, 2〉, 〈L0, 3〉}
value = {〈N0, 0〉, 〈N1, 1〉, 〈N1, 2〉, 〈N2, 1〉, 〈N2, 2〉, 〈N3, 2〉}



source 
program

ANN

Instances generation Learning phase

object 
classifier

positive 
cases

negative 
cases

field extensions 
computation and 
object breaking

execution of 
assumed-correct 

code

Instances as vectors

positive 
vectors

negative
vectors

vector 
generation

Fig. 5. An overview of the technique

We will build potentially invalid instances by changing field
values in valid structures. We have two possibilities for a
change in a given object field: we can go “outside” the exten-
sions, i.e., assign a value to the field that has not been observed
in any of the built valid structures (and thus guaranteeing that
is a new object), or go “inside” the extensions, i.e., assign
a value different from the original, but within the feasible
“observed” ones for the field. In the former case, we need
to define a scope, so that being “outside” the extension can
be precisely defined. Assume, for the sake of simplicity, that
we arbitrarily define the following scope: exactly one list
object (L0), 4 nodes (N0, . . . , N3), size in the range 0..3
and value in the range 0..2. Now, we can build (allegedly)
invalid instances by changing, for each valid structure, a value
of some reachable field to some different value, outside the
corresponding extension, or within it but different from the
original. In Fig. 4 we show a sample of potentially invalid
instances obtained from those in Fig. 2 using this mechanism.

A few issues can be noticed from these examples. First,
there is no guarantee that we actually build invalid instances
with this process. The top right object in Fig. 4 is in fact a valid
case. Artificial neural networks are however rather tolerant to
“noise” during learning, so as long as the number of spurious
invalid objects is low, learning may still work well. Second,
what we are able to build as potentially invalid instances
greatly depends on what we produced as valid ones, and what
we define as the scope. Both issues are critical, and we discuss
these further in the next section. Third, the specific mechanism
for choosing a value within the corresponding field extension
or outside it, is not specified. One may randomly choose on
which direction to go, and with which proportion to go inside
or outside the extensions. Intuitively, going “outside” the field
extensions has better chances of producing invalid structures.

IV. THE TECHNIQUE

Let us now present in more detail our approach to ap-
proximate class invariants using artificial neural networks.
The technique, depicted in Fig. 5, has three main steps:
(i) automatically generating valid and invalid data structure
objects, (ii) representing objects of the class (both valid and
invalid) as numerical vectors, to be able to feed these to a
neural network, and (iii) building an artificial neural network,
and training it with the produced valid and invalid objects, to
learn to classify data structure instances as valid or invalid.

A. Generating Instances for Training

Assuming that we are given a class C for which we want to
learn to classify valid vs. invalid data structure objects, our first
step consists of generating instances that must and must not
satisfy the intended invariant, respectively. As we mentioned
before, our first assumption is that a set m of methods of
C is identified as the assumed-correct builders of the class,
i.e., a set of methods whose implementations are assumed
correct, and that thus can be used to build valid instances.
This assumption is in fact rather common in verification
and test generation environments, that produce instances from
a class’s public interface (see, e.g., [20], [28], [24]). Our
second assumption is that a notion of scope is provided (see
previous section for an intuition of this requirement). The
scope provides a defined domain for each field of each class
involved in the analysis, and thus provides a domain where
to search for field values when building potentially invalid
objects from valid ones. The scope is not only relevant in
defining a finite universe to compute the complement of field
extensions (useful in building invalid instances); it also bounds
the instances to be considered, allowing us to characterize
them as fixed-size vectors (see next subsection).

In order to build valid instances, any input generation
technique that can produce objects from a class interface, is
suitable, including model checking based ones [20], [15], and
random generation [29], [27], for instance (in our experiments
we will use random generation). Using the produced valid in-
stances, we compute field extensions and generate potentially
invalid instances by modifying valid ones, as follows: given a
valid instance c, an object o reachable from c and a field f
in o, we change the value of o.f to either a value within the
extension of f with respect to o, or outside it but within the
scope. The latter is favored since it exploits field extensions
guaranteeing that a new object is constructed. From each valid
structure, we produce as many invalid objects as object fields
are reachable in the structure, using the above procedure to
change a single object field in each case. Choosing to go
within extensions or outside them can be done randomly.
In our experiments, we change an object field going within
the extensions with a probability of 0.2, and outside these
with a probability of 0.8. The rationale for the selection is
based on experimentation; we tried, for small scopes, different
probabilities (and these were the ones that achieved better per-
formance). When an object is changed, nodes are “relabeled”
to preserve the breadth-first canonical ordering mentioned in
section 2. Finally, we discard any potentially invalid object
generated with the above procedure, that is also within the set
of valid objects, so that there is no intersection between the
valid and invalid objects used for training the network.

The generation technique for valid inputs is related to how
the scope is chosen. Some techniques require the scope a
priori for generation (e.g., [15]), while in others the scope
can be derived from the generated instances, e.g., looking at
the largest produced object, or the range of produced values.
Intuitively, the scope should be at most “slightly loose” with



3 1 0 2 2 3 2 4 2 0{ { { { {

L0 N0 N1 N2 N3

size head val. next val. next val. next val. next

range 0..4 for null, N0, …, N3

Fig. 6. Instance vector for a Singly Linked List example.

respect to the field extensions corresponding to the generated
valid instances, in the sense that, when building invalid objects,
it should prevail to form field associations that are not part of
any valid object, but that involve values that are part of valid
objects. In our experiments, we chose the scope a priori, and
discarded any randomly generated object that lied outside the
scope.

B. Representing Instances as Vectors

Neural networks receive as inputs vectors of values, which
are in general restricted to numeric types. While for some
datatypes an encoding is direct (e.g., characters, enumerated
types, strings of a maximum length), for objects of an arbitrary
class C it is less straightforward. In order to encode object
states as vectors, we adopt the candidate vector format of Korat
[8]. Given a scope k, that defines ranges for numeric types
and maximum number of instances for reference types, any
instance o of class C within scope k can be represented by
a vector containing a cell for each field f of each object o′

reachable from o. The domain of each cell is a range of natural
numbers, where each value uniquely identifies an object/value
within the scope, for the corresponding field. For instance,
given a scope of exactly one list object, 4 nodes, size in the
range 0..3 and value in the range 0..2 for the singly linked
list example, the top-right list of Fig. 2 is represented by the
instance vector shown in Fig. 6.

This representation implies that the maximum size consid-
ered for reference-based types has to be set beforehand, since it
determines the vector length. Therefore, we cannot in principle
use a network trained for instances of size up to k with
structures of a greater size, since the latter would be captured
with different (longer) vectors. It is worth remarking that our
object encoding mechanism is deterministic. Structures are
canonically represented by assigning identifiers to nodes by
their order in breadth-first traversal (using an arbitrary, but
fixed, order for fields). Also, floating point fields are supported
by our technique, but are disregarded when generating invalid
vectors (i.e., we never build “invalid” structures by modifying
floating point fields).

C. Building and Training the Neural Net

The vectors representing the positive and negative instances
form the training set that we feed the network with. The
network that we build in order to learn to classify these
instances as positive or negative is a feed-forward artificial
neural network. Firstly, assuming that the size of the current
vectors is n, the input layer will contain n input neurons,
each receiving a position of the vector, and the output layer

will always have 1 neuron since our classification problem
involves two different classes. Only one hidden layer is used.
The number of hidden units (i.e., number of neurons) in the
hidden layer is a hyperparameter whose value can impact the
network’s effectiveness, and can be set automatically. Known
algorithms to automatically select hyperparameters are grid
search and random search; we use random search due to
its ability to reduce the validation set error faster than grid
search [7]. The parameter for the number of hidden layer
units takes values in the range [2, 100]. Another hyperpa-
rameter that is usually considered, and we consider in our
work, is the regularization term (a penalty coefficient that
affects the neural network’s learning process); values for this
parameter were taken in the range [−5, 3], evenly spaced in
a logarithmic scale, as is customary in various domains. We
launched 10 random combinations of hyperparameter values
and then selected the combination with the best performance,
to determine the final network architecture. As we show in
the following experimental evaluation, the level of precision
that we achieved did not demand further tuning of the neural
network’s hyperparameters.

We use the Multi-layer Perceptron neural network imple-
mentation of the python scikit-learn package [31].

V. EVALUATION

The evaluation of our technique is driven by the following
research questions:

RQ1 Is the technique for building potentially invalid instances
suitable for this task?

RQ2 How precise is the neural network in classifying valid/in-
valid objects?

RQ3 Do our learned object classifiers help in capturing rel-
evant information on expected class behaviors, that can
lead to improved bug finding?

To evaluate RQ1, we need to assess every potentially invalid
instance that we build with our technique based on field
extensions, to check if it is indeed invalid. Our experiment
proceeded as follows. We took all case studies accompanying
the Korat distribution [8] (available in [2]), that involve
various data structures of varying complexities for which
class invariants are provided (notice that Korat requires class
invariants expressed as Java predicates for test input generation
[8]). We extended each class with a set of builders (e.g.,
constructor and insertion routines), and used Randoop to
produce valid instances with these builders, disregarding the
invariant provided with Korat, for different scopes. For each
case we ran Randoop with 100 different seeds, 10 seconds
each, and collected all produced objects (a total of over 16
minutes input generation time, per case study). We then used
our technique based on exploiting field extensions to produce
potentially invalid objects, and checked for their spuriousness
using the corresponding invariant in the Korat distribution. In
these experiments, the object builders were straightforward
to select (mostly constructors and insertion routines), but
selecting a sufficient and at the same time small set of builders
may be subtle.



TABLE I
NUMBER OF SPURIOUS INVALID OBJECTS GENERATED BY EXPLOITING

FIELD EXTENSIONS.

Scope Instances
Total Positive Negative False Negative

Singly Linked List
6 15731 2486 13245 0 (0%)
7 41323 7867 33456 0 (0%)
8 81199 16416 64783 0 (0%)

Singly Sorted List
6 10546 240 10306 239 (2%)
7 34779 830 33949 760 (2%)
8 85708 2577 83131 1966 (2%)

Doubly Linked List
6 48190 5155 43035 0 (0%)
7 85955 9381 76574 0 (0%)
8 136893 14801 122092 0 (0%)

Binary Tree
6 7255 193 7062 0 (0%)
7 21647 567 21080 0 (0%)
8 55953 1401 54552 0 (0%)

Binary Search Tree
6 19137 692 18445 365 (2%)
7 53006 2198 50808 840 (2%)
8 112031 5368 106663 1700 (2%)

Red Black Tree
6 8700 165 8535 131 (2%)
7 27358 464 26894 313 (1%)
8 73422 1323 72099 690 (1%)

Binomial Heap
6 3243 407 2836 70 (2%)
7 2830 380 2450 58 (2%)
8 124563 12889 111674 5213 (5%)

The results are summarized in Table I. This Table shows,
for each case study and various scopes, the total number of
produced objects, distinguishing between valid and invalid
objects, and for the latter the number of spurious cases (i.e.,
objects built by breaking objects using field extensions that
actually satisfied the corresponding original repOK provided
with Korat). Due to space reasons, we show a sample of the
structures and scopes. Further details can be found in the
experiments site [3].

To evaluate RQ2, we first performed the following exper-
iment. We again took Korat case studies with our provided
object builders, and ran, for each class C, our technique,
obtaining a corresponding object classifier I ′. In this step we
used the object builders, and disregarded the provided class
invariants. We then used for each class C its Korat invariant
I to generate all valid objects within a given scope k (i.e.,
all valid objects of size at most k), using the Korat tool [8].
Moreover, we also collected the objects that Korat produced in
the search for valid objects, that were deemed invalid (i.e., that
did not satisfy the corresponding invariant). This collection of
valid and invalid objects was used for measuring the precision
and recall in object classification, as separate measures for
valid and invalid objects. This experiment was performed
for increasingly larger scopes, as long as the number of
instances did not exceed 1 million. The results are summarized
in Table II. For each case study and scope we report: the
number of valid and invalid objects used for training, as
well as the training time (notice that each training set was
generated with Randoop and the object builders); the size of

the sample used for measuring recall/precision, provided as
total number of valid/invalid objects (notice that these were
generated using Korat); the number of objects correctly and
incorrectly classified (tp/tn for true positive/negative, fp/fn for
false positive/negative), and the corresponding precision and
recall, given as percentages. Notice that, since the training and
evaluation sets are generated independently, some structures
used in training may also appear in the evaluation set. We have
indicated between parentheses the number of new positive and
negative instances in the evaluation set, i.e., those structures
that have been used for evaluation but that were not part of the
corresponding training sets. Again, a sample of the structures
and scopes is shown; more information can be found in the
experiments site [3].

In order to have a reference of the accuracy of our approach,
we compare our learned object classifiers with invariants
generated using Daikon [13]. The process we followed to
produce invariants with Daikon is the following. For each
case study, we took the same tests used as a starting point for
learning object classifiers with our approach, and ran Daikon
using those. Daikon produced a list l of likely invariants, which
in all cases included invalid properties (properties that were
true of the provided tests but were not true in the general case
for the corresponding structure). From l, we produced a list
l′, by manually filtering invalid properties (i.e., properties that
do not hold for all structures). We measured the precision and
recall of the obtained Daikon invariants, for the same objects
used to measure precision/recall of our technique. The results
are summarized in Table III.

RQ3 is the only research question that does not demand a
provided class invariant for assessment. To evaluate it, we took
buggy implementations of data structures from the literature:
the scheduler implementation from the SIR repository
[12], an implementation of n-ary trees that is part of the
ANTLR parser generator, implementations of routines of a set
of integers, over red black trees, with seeded bugs, presented
in [42], binary search trees and binomial heaps used in the
empirical evaluation in [14] containing one real bug each, and
a fibonacci heap implementation taken from [1], containing a
real bug. For each case study, we took a set of builders (these
are provided as part of the corresponding implementations,
as opposed to the builders considered in RQ1), and generated
tests with Randoop from which we learned an object classifier
with our technique, with a relatively small scope (5 for all
cases), and produced likely invariants with Daikon, processed
as for RQ2. We then compared Randoop with invariant check-
ing disabled, and Randoop with invariant checking enabled
(@checkRep) using: (i) the learned classifier, and (ii) the
Daikon “filtered” invariant (only valid properties are kept), to
check in each case the bug finding ability. Every Randoop
execution for instance generation was run as for RQ2 (i.e.,
with a scope of 5), except for BinHeap, where we used scope
13 since a known bug is first exposed with such a scope. For
bug finding, a timeout of 10 minutes was set. The results are
summarized in Table IV. In the case of ANTLR, Randoop
is not able to catch the bug under any configuration. The



TABLE II
PRECISION AND RECALL OF CLASSIFYING TECHNIQUE ON COMPLEX DATA STRUCTURES.

Training Testing
Scope Instances Time Positive Instances Negative Instances

Positive Negative sec. total tp fp precision(%) recall(%) total tn fn precision(%) recall(%)
Data Structure: Singly Linked List

6 2486 13245 3,96 3906 (1420) 3906 5 99,8 100,0 42778 (37988) 42773 0 100,0 99,9
7 7867 33456 26,65 55987 (48120) 55897 7 99,9 99,8 725973 (714149) 725966 0 100,0 99,9
8 16416 64783 75,66 960800 (944384) 960800 1 99,9 100,0 10000000 (9982384) 9999999 0 100,0 99,9

Data Structure: Singly Sorted List
6 240 10306 24,51 252 (12) 246 5 98,0 97,6 96820 (94883) 96815 6 99,9 99,9
7 830 33949 133,02 924 (94) 873 2 99,7 94,4 1617109 (1610806) 1617109 51 99,9 100,0
8 2577 83131 453,14 3432 (855) 3142 57 98,2 91,5 10000000 (9988045) 9999943 290 99,9 99,9

Data Structure: Doubly Linked List
6 5155 43035 18,38 55987 (50832) 55987 8 99,9 100,0 465917 (458009) 465909 0 100,0 99,9
7 9381 76574 240,68 960800 (951419) 960800 8 99,9 100,0 8914750 (8901434) 8914742 0 100,0 99,9
8 14801 122092 978,39 1000000 (999262) 999999 1 99,9 99,9 10000000 (9998920) 9999999 0 100,0 99,9

Data Structure: Binary Tree
6 193 7062 12,81 197 (4) 197 0 100,0 100,0 4638 (3686) 4638 0 100,0 100,0
7 567 21080 162,47 626 (59) 524 3 99,4 83,7 17848 (15388) 17845 102 99,4 99,9
8 1401 54552 94,08 2056 (655) 2054 7 99,6 99,9 68810 (63224) 68803 2 99,9 99,9

Data Structure: Binary Search Tree
6 692 18445 99,15 731 (39) 720 1621 30,7 98,4 61219 (59369) 59598 11 99,9 97,3
7 2198 50808 437,42 2950 (752) 2395 6105 28,1 81,1 468758 (466278) 462653 555 99,8 98,6
8 5368 106663 574,27 12235 (6867) 7185 109544 6,1 58,7 3613742 (3511344) 3504198 5050 99,8 96,9

Data Structure: Red Black Tree
6 165 8535 29,31 327 (162) 231 52 81,6 70,6 25611 (25290) 25559 96 99,6 99,7
7 464 26894 118,20 911 (447) 679 267 71,7 74,5 111101 (110352) 110834 232 99,7 99,7
8 1323 72099 235,94 2489 (1166) 1709 2123 44,5 68,6 493546 (492139) 491423 699 99,8 99,5

Data Structure: Binomial Heap
6 3013 31141 242,43 7602 (4589) 6864 31 99,5 90,2 35213 (35093) 35182 738 97,9 99,9
7 7973 70053 401,46 107416 (99443) 100301 456 99,5 93,3 154372 (154235) 153916 7115 95,5 99,7
8 12889 111674 289,46 603744 (590855) 562354 34756 94,1 93,1 719450 (719261) 684694 41390 94,2 95,1

reason is that, due to the mechanism that Randoop uses for
incrementally building test cases, it cannot produce the aliasing
situation that is necessary to catch the bug (basically, adding
a node to itself as a child, a situation that the class interface
allows for, but Randoop cannot produce). However, when
manually building this scenario, the learned classifier detects
the anomaly, whereas no anomaly is detected without invariant
checking (i.e., no exception or other obvious error is observed)
nor with the filtered Daikon invariant. We marked this case as
“manual” to reflect this singularity.

All the experiments presented in this section can be re-
produced following the instructions found in the site of the
replication package of our approach [3].

A. Discussion

Let us briefly discuss the results of our evaluation. Re-
garding RQ1, our technique for producing invalid objects by
exploiting field extensions worked reasonably well. In general,
less than 5% of the presumably invalid objects were actually
valid, with an effectiveness that increased for larger scopes.
A closer look at these cases shows that most spurious invalid
cases have to do with producing changes in data fields, that
the neural network identifies as anomalous but the known
invariant allows for. That is, when a change to a structure
field is produced, it mostly leads to an invalid object. In other
words, field extensions seem to accurately summarize field
value feasibility. An issue that may affect this effectiveness is
the budget set for generating valid instances (and collecting
field extensions). The multiple Randoop runs performed with
different seeds produced sufficiently large samples of valid
structures, in our experiments, but this budget may be extended
to obtain more precise field extensions in other case studies.

Regarding RQ2, our experimental results show that the
artificial neural network produces object classifiers that closely
approximate class invariants. Indeed, the technique learns
classifiers that achieve a very high precision and recall for
negative cases, and significantly better precision/recall for
positive ones, compared with related techniques. In other
words, misclassified cases are significantly more likely to be
invalid inputs classified as valid, rather than the opposite. This
is a positive fact for bug detection, since it confirms that
classifiers tend to over-approximate class invariants (they will
produce fewer false negatives). The case studies where we had
less precision for positive cases were Binary Search Tree and
Red Black Tree. These cases classify various invalid objects as
valid. We confirmed that the reason for this observed learning
limitation in these case studies has to do with the complexity
of the invariants of these data structures regarding data objects,
more precisely sortedness; indeed, all invalid cases that were
misclassified as valid were correct from a structural point of
view, but violated sortedness. Further experimentation with
more complex network topologies (larger number of hidden
neurons) may show a better performance in these cases. Still,
accuracy of our fully automated approach is significantly better
than Daikon’s manually filtered invariants.

Regarding RQ3, let us remark that our comparison is
between our technique, that is fully automated, and a manually
filtered instance of Daikon. In particular for this research
question, the effort required to produce the filtered version
of Daikon-produced invariants is significant, since in most of
these cases we did not have reference invariants to compare to,
and thus each likely invariant had to be carefully examined to
decide whether it was valid, invalid, or valid for some cases.



For instance, for the binomial heap case study, the resulting
post-processed Daikon invariant has 31 lines, and involved
going through 26 likely invariants, difficult to reason about
(it is a quite sophisticated data structure). Our results show
that we achieve significantly better bug finding compared to
“no invariant” and “filtered” Daikon invariant analyses, since
our object classifiers catch 13 out of 17 bugs, while with no
invariant only 3 bugs are detected, and the filtered Daikon
invariant finds 6 out of 17. This is a very important result,
taking into account the effort required for the engineer to
produce the processed Daikon invariants, and the fact that our
technique is fully automated.

The 3 bugs that in the case of schedule can be found
with invariant checking disabled, throw exceptions, and thus
do not need a specification to be caught. The remaining 5 bugs
do not produce state changes, and thus cannot be caught by
invariant checking. The additional bug that we found is in fact
a bug that is not explicitly indicated in the repository. This 9th
bug was discovered in the supposedly correct version. It is a
bug in the upgrade_process_prio routine, that moves a
process to a queue of a higher priority, but it does not update
the process priority correctly. Indeed, a line in this routine that
performs the following assignment:

proc->priority = prio;

should instead be as follows:

proc->priority = prio+1;

The SIR repository includes another scheduler implemen-
tation (scheduler2). We did not include this case study in
our evaluation because all seeded bugs correspond to routines
that do not change object states, and thus cannot be caught
by just checking invariant preservation. The bugs seeded in
the red-black tree implementation from [42] all correspond to
the insert method. We trained the neural network using a
correct version of this method, and then used it to attempt to
catch the seeded bugs.

B. Threats to Validity

Our experimental evaluation is limited to data structures.
These are good representatives of data characterized by com-
plex invariants, which are beyond known invariant inference
techniques such as Daikon. From the wide domain of data
structures, we have selected a large set for which invari-
ants were provided elsewhere, for answering RQ1 and RQ2,
that required provided invariants. This benchmark includes
data structures of varying complexities, including cyclic and
acyclic topologies, balance, sortedness, etc. One may argue
that restricting the analysis to these case studies might favor
our results. While an exhaustive evaluation of classes with
complex constraints is infeasible, we consider that invariant
complexity (especially for invariants whose expression goes
beyond simple constraints such as linear comparisons) is a
crucial aspect we want our approach to target, and designed
the experiments taking this issue into account. The evaluated
structures correspond to a broad range of complexity, going

from those with simple linear structures to other with tree-
like, balanced shape. For RQ3, we did not need classes with
provided invariants. We chose to analyze buggy data structures
taken from the literature, as opposed to evaluating on our own
seeded faults, to avoid unintentional bias.

The evaluation is largely based on implementations taken
from the literature. Korat case studies had to be extended,
however, with builders. Our implementations were carefully
examined, as an attempt to make these respect the cor-
responding invariant, and to remove possible defects that
would affect our experiments. We did not formally verify
our implementations, but errors in these would have implied
invalid objects being generated as valid, thus affecting the
outcome of our whole learning approach. That is, errors in
our implementations would have derived in less precision, i.e.,
they would hinder our results rather than favour them.

VI. RELATED WORK

Many tools for automated program analysis can profit from
invariants. Some tools use invariants for run time checking,
notably the Eiffel programming language, that incorporates
contracts as part of the programming language [26], the
runtime assertion checker and static verifiers that use JML [9],
Code Contracts for .NET [5], among others. Some techniques
for automated test case generation also exploit these invariants
for run time checking, converting the corresponding techniques
into bug finding approaches. Some examples are Randoop [29]
and AutoTest [27]. Our approach learns object classifiers that
can be used in place of class invariants, but which are are black
box, i.e., are not composed of explicit constraints that can be
inspected. But since many of the above mentioned tools simply
use invariants for object checking, without any dependency on
the internal structure of the invariant, they are useful in these
contexts. However, tools like Korat and Symbolic PathFinder,
that require class invariants in the form of repOK routines to
be provided, cannot be used with our learned classifiers, since
they exploit the program structure of the invariant to drive the
search for valid inputs [8], [30].

The oracle problem has been studied by many researchers,
and techniques to tackling it in different ways, have been pro-
posed [6]. Our approach is more closely related to techniques
for oracle derivation [6], more precisely, for specification
inference. Within this category, tools that perform specification
inference from executions, like ours, include Daikon [13] and
JWalk [38]. Both these tools attempt to infer invariants from
positive executions, as opposed to our case that also includes a
mechanism to produce (potentially) invalid objects. We have
compared in this paper with Daikon, since JWalk tends to
infer properties that are more scenario-specific. The use of
artificial neural networks for inferring specifications has been
proposed before [36], [35]; these works, however, attempt
to learn postcondition relations (I/O relations) from “golden
versions” of programs, i.e., assumed correct programs. While
this approach is useful, e.g., in regression testing or differential
testing scenarios, using it in our case would mean to learn the



TABLE III
PRECISION AND RECALL OF MANUALLY FILTERED DAIKON INVARIANTS ON COMPLEX DATA STRUCTURES.

Testing
Scope Instances Positive Instances Negative Instances

Positive Negative total tp fp precision(%) recall(%) total tn fn precision(%) recall(%)
Data Structure: Singly Linked List

6 2486 13245 3906 3906 42770 8,3 100,0 42778 8 0 100,0 0,0
7 7867 33456 55987 55987 725964 7,1 100,0 725973 9 0 100,0 0,0
8 16416 64783 960800 960800 9999997 8,7 100,0 10000000 3 0 100,0 0,0

Data Structure: Singly Sorted List
6 240 10306 252 252 713 26,1 100,0 911 198 0 100,0 21,7
7 830 33949 924 924 3421 21,2 100,0 3978 557 0 100,0 14,0
8 2577 83131 3432 3432 15944 17,7 100,0 17781 1837 0 100,0 10,3

Data Structure: Doubly Linked List
6 5155 43035 55987 55987 345246 13,9 100,0 465917 120671 0 100,0 25,8
7 9381 76574 960800 960800 6862849 12,2 100,0 8914750 2051901 0 100,0 23,0
8 14801 122092 1000000 1000000 7930490 11,1 100,0 10000000 1069510 0 100,0 10,6

Data Structure: Binary Tree
6 193 7062 197 197 4634 4,0 100,0 4638 4 0 100,0 0,0
7 567 21080 626 626 17844 3,3 100,0 17848 4 0 100,0 0,0
8 1401 54552 2056 2056 68806 2,9 100,0 68810 4 0 100,0 0,0

Data Structure: Binary Search Tree
6 692 18445 731 731 40157 1,7 100,0 61219 21062 0 100,0 34,4
7 2198 50808 2950 2950 330636 0,8 100,0 468758 138122 0 100,0 29,4
8 5368 106663 12235 12235 2644744 0,4 100,0 3613742 968998 0 100,0 26,8

Data Structure: Red Black Tree
6 165 8535 327 327 4122 7,3 100,0 25611 21489 0 100,0 83,9
7 464 26894 911 911 20796 4,1 100,0 111101 90305 0 100,0 81,2
8 1323 72099 2489 2489 94296 2,5 100,0 493546 399250 0 100,0 80,8

Data Structure: Binomial Heap
6 3013 31141 7602 7602 13699 35,6 100,0 35213 21514 0 100,0 61,0
7 7973 70053 107416 107416 58791 64,6 100,0 154372 95580 0 100,0 61,9
8 12889 111674 603744 603744 297057 67,0 100,0 719450 422393 0 100,0 58,7

TABLE IV
EFFECTIVENESS OF LEARNED CLASSIFIERS IN BUG FINDING.

Case #Bugs #Found #Found # Found
Study No Inv. Obj. Class. Filt. Daikon
Antlr 1 0 (man.) 1 (man.) 0 (man.)
Scheduler 8 3 4 3
IntTreeSet 5 0 5 3
BinTree 1 0 1 0
BinHeap 1 0 1 0
FibHeap 1 0 1 0

I/O relation for a repOK, having the repOK in the first place,
a simpler problem compared to what we are tackling here.

The notion of field extension as a compact representation
of a collection of generated structures was put forward in
[33], and originates in the relational semantics of signature
fields in Alloy [17], and in the notions of upper and lower
bounds introduced with the KodKod engine [39]. Our use of
field extensions in this work, as a basis for the mechanism
for “breaking” valid objects, is different from the purpose of
bounds and partial bounds in the above cited works.

VII. CONCLUSIONS

Software specification plays a central role in various stages
of software development. In the context of program analysis,
there is an increasing availability of powerful techniques,
including test generation [29], [27], [4], bug finding [14], [24],
fault localization [43], [41] and program fixing [40], [21], [32],
for which the need for program specifications becomes crucial.
While many of these tools resort to tests as specifications,

they would in general greatly benefit from the availability of
stronger, more general specifications, such as those that class
invariants provide. Invariants are becoming more common in
program development, with methodologies that incorporate
these [25], [22], and tools that can significantly exploit them
when available for useful analyses.

We developed a technique, based on neural networks, for
inferring object classifiers to be used in place of class invari-
ants. The technique is related to other, similarly motivated,
approaches [13], [38], in the sense that it explores dynamic
software behaviours for the inference, but it also incorporates
a technique for producing invalid objects, enabling the training
of a neural network. We have analyzed the use of neural
networks for learning object classifiers, and showed that the
learning process achieves very high accuracy compared to
related approaches, that our mechanism to build supposedly
invalid objects is effective, and that the learned object classi-
fiers improve bug detection, as evidenced by experiments on
a benchmark of data structures of varying complexities.

This work opens several lines for future work. Our artificial
neural network is built with rather standard parameters; ad-
justing variables such as number of hidden layers, activation
function, etc., may be necessary, especially when scaling to
larger domains. The performance of artificial neural networks
can also be improved by feature engineering [16], a mecha-
nism we have not yet explored. Our experiments were based
on the use of random generation for producing valid objects,
the initial stage of the technique. Using alternative generation
approaches such as model checking and symbolic execution,
may lead to different, possibly more precise, results.



REFERENCES

[1] Fibonacci heap implementation from the graphmaker library.
https://github.com/nlfiedler/graphmaker. Version control
revision of the bug: https://github.com/nlfiedler/graphmaker/
commit/13d53e3c314d58cb48a6186437a36241842c98d7#
diff-1c644baf14f6ab27ffa2691c9ff02cbd. Accessed: 2018-09-02.

[2] Home page of the korat test generation tool. http://korat.sourceforge.net.
Accessed: 2017-07-01.

[3] Replication package of the object (in)validity learning approach. https:
//sites.google.com/site/learninginvariants.

[4] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek,
Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato,
Nicolás Rosner, and Ignacio Vissani. Improving test generation under
rich contracts by tight bounds and incremental SAT solving. In Sixth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013,
pages 21–30. IEEE Computer Society, 2013.

[5] Mike Barnett. Code contracts for .net: Runtime verification and so
much more. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg
Sokolsky, and Nikolai Tillmann, editors, Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings, volume 6418 of Lecture Notes in Computer Science,
pages 16–17. Springer, 2010.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. IEEE Trans.
Software Eng., 41(5):507–525, 2015.

[7] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, February 2012.

[8] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. In Phyllis G. Frankl, editor,
Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002, pages 123–133.
ACM, 2002.

[9] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced specification and verification with JML
and esc/java2. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111
of Lecture Notes in Computer Science, pages 342–363. Springer, 2005.

[10] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy:
dynamic symbolic execution for invariant inference. In Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, editors, 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 281–290. ACM, 2008.

[11] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular
verification of code with SAT. In Lori L. Pollock and Mauro Pezzè,
editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July
17-20, 2006, pages 109–120. ACM, 2006.

[12] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

[13] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput. Program.,
69(1-3):35–45, 2007.

[14] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F.
Frias. Analysis of invariants for efficient bounded verification. In Paolo
Tonella and Alessandro Orso, editors, Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA 2010,
Trento, Italy, July 12-16, 2010, pages 25–36. ACM, 2010.

[15] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-
tor Kuncak, and Darko Marinov. Test generation through programming
in UDITA. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu,
and Sebastián Uchitel, editors, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010, pages 225–234. ACM,
2010.

[16] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3:1157–1182,
2003.

[17] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[18] Daniel Jackson, Somesh Jha, and Craig Damon. Isomorph-free model
enumeration: A new method for checking relational specifications. ACM
Trans. Program. Lang. Syst., 20(2):302–343, 1998.

[19] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov,
and Sarfraz Khurshid. Testera: A tool for testing java programs using
alloy specifications. In Perry Alexander, Corina S. Pasareanu, and
John G. Hosking, editors, 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, pages 608–611. IEEE Computer Society, 2011.

[20] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2619 of Lecture Notes in Computer Science, pages 553–568.
Springer, 2003.

[21] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Trans. Software Eng., 38(1):54–72, 2012.

[22] Barbara Liskov and John V. Guttag. Program Development in Java
- Abstraction, Specification, and Object-Oriented Design. Addison-
Wesley, 2001.

[23] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, 2008.

[24] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded
model checking of C and C++ programs using a compiler IR. In
Rajeev Joshi, Peter Müller, and Andreas Podelski, editors, Verified
Software: Theories, Tools, Experiments - 4th International Conference,
VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings,
volume 7152 of Lecture Notes in Computer Science, pages 146–161.
Springer, 2012.

[25] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[26] Bertrand Meyer. Design by contract: The eiffel method. In TOOLS
1998: 26th International Conference on Technology of Object-Oriented
Languages and Systems, 3-7 August 1998, Santa Barbara, CA, USA,
page 446. IEEE Computer Society, 1998.

[27] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu.
Automatic testing of object-oriented software. In Jan van Leeuwen,
Giuseppe F. Italiano, Wiebe van der Hoek, Christoph Meinel, Harald
Sack, and Frantisek Plasil, editors, SOFSEM 2007: Theory and Practice
of Computer Science, 33rd Conference on Current Trends in Theory
and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, 2007, Proceedings, volume 4362 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2007.

[28] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and Aditya V.
Thakur. The yogiproject: Software property checking via static analysis
and testing. In Stefan Kowalewski and Anna Philippou, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings, volume 5505 of
Lecture Notes in Computer Science, pages 178–181. Springer, 2009.

[29] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007, pages 75–84. IEEE Computer Society, 2007.

[30] Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Gelden-
huys, Peter C. Mehlitz, and Neha Rungta. Symbolic pathfinder:
integrating symbolic execution with model checking for java bytecode
analysis. Autom. Softw. Eng., 20(3):391–425, 2013.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.



[32] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. IEEE
Trans. Software Eng., 40(5):427–449, 2014.

[33] Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser.
Field-exhaustive testing. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 908–919. ACM,
2016.

[34] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach (3. internat. ed.). Pearson Education, 2010.

[35] Seyed Reza Shahamiri, Wan M. N. Wan-Kadir, Suhaimi Ibrahim, and
Siti Zaiton Mohd Hashim. Artificial neural networks as multi-networks
automated test oracle. Autom. Softw. Eng., 19(3):303–334, 2012.

[36] Seyed Reza Shahamiri, Wan Mohd Nasir Wan-Kadir, Suhaimi Ibrahim,
and Siti Zaiton Mohd Hashim. An automated framework for software
test oracle. Information & Software Technology, 53(7):774–788, 2011.

[37] Rahul Sharma and Alex Aiken. From invariant checking to invariant
inference using randomized search. Formal Methods in System Design,
48(3):235–256, 2016.

[38] Anthony J. H. Simons. Jwalk: a tool for lazy, systematic testing of java
classes by design introspection and user interaction. Autom. Softw. Eng.,
14(4):369–418, 2007.

[39] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Orna Grumberg and Michael Huth, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 13th International Conference,

TACAS 2007, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer
Science, pages 632–647. Springer, 2007.

[40] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings, pages 364–374. IEEE,
2009.

[41] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
A survey on software fault localization. IEEE Trans. Software Eng.,
42(8):707–740, 2016.

[42] Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and
Kathryn S. McKinley. History-aware data structure repair using SAT. In
Cormac Flanagan and Barbara König, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Confer-
ence, TACAS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings, volume 7214 of Lecture Notes
in Computer Science, pages 2–17. Springer, 2012.

[43] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults
through automated predicate switching. In Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa, editors, 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006, pages 272–281. ACM, 2006.


