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Abstract. The automated generation of test cases for heap allocated,
complex, structures is particularly difficult. Various state of the art tools
tackle this problem by bounded exhaustive exploration of potential test
cases, using constraint solving mechanisms based on techniques such as
search, model checking, symbolic execution and combinations of these.
In this article we present a technique for improving the bounded ex-
haustive constraint based test case generation of structurally complex
inputs, for “filtering” approaches. The technique works by guiding the
search considering a given black box test criterion. Such a test criterion is
incorporated in the constraint based mechanism so that the exploration
of potential test cases can be pruned without missing coverable classes
of inputs, corresponding to the test criterion.
We present the technique, together with some case studies illustrating its
performance for some black box testing criteria. The experimental results
associated with these case studies are shown in the context of Korat, a
state of the art tool for constraint based test case generation, but the
approach is applicable in other contexts using a filtering approach to test
generation.

1 Introduction

Testing is a powerful and widely used technique for software quality assurance
[6]. The technique essentially consists of executing a piece of code, whose quality
needs to be assessed, under a number of particular inputs, or test cases. For these
test cases to be adequate, they generally need to try the software under different
circumstances. A variety of test criteria have been devised, which basically define
what are the different situations that a set of test cases must exercise, or cover
[17].

Generating test cases is generally a complex activity, in which the engineer in
charge of the generation has to come up with inputs that satisfy, in many cases,



complex constraints. The problem is particularly difficult when the inputs to be
generated involve complex, heap allocated, structures, such as balanced trees,
graphs, etc. Some tools [2, 16, 7, 10, 4] tackle this problem rather successfully, by
bounded exhaustive exploration of potential test cases. More precisely, these tools
work by generating all the inputs, within certain bounds (maximum number of
objects of each of the classes involved in the structure), that satisfy a given
constraint using some kind of constraint solver. Among the possible constraint
solving techniques, model checking and other search related mechanisms have
been implemented into state of the art tools.

In order to make the bounded exhaustive generation feasible, different mech-
anisms are implemented so that, in some cases, redundant structures are avoided,
and such that parts of the state space corresponding to invalid structures are not
explored. For instance, Korat implements a symmetry breaking mechanism to-
gether with an approach for avoiding the generation of invalid structures based
on a sophisticated pruning technique; TestEra uses Alloy and its underlying
symmetry breaking and optimisation mechanisms to improve the generation;
UDITA implements a novel lazy evaluation mechanism, which in combination
with symbolic execution greatly improve the test generation process.

In this work, we consider a complement to the so called filtering approach
[4] to bounded exhaustive test generation, i.e., the process of exhaustively gen-
erating all possible structures (within the established bounds) and “filtering”
to keep the valid or well formed ones. This complement takes into account a
black box test criterion as part of the “generate and filter” process. Basically, in
the same way that symmetric structures are avoided, we propose to also avoid
the exploration of portions of the search space for test input candidates when
such portions are guaranteed to provide test inputs corresponding to classes al-
ready covered by other test inputs previously generated. The result is somehow
in between bounded exhaustive and “optimal” equivalence class coverage, and
the actual “exhaustiveness” of the technique depends on the interaction of the
test criterion (e.g., the adequacy of the predicates used for equivalence class
coverage) and the generation procedure.

The motivation for this work lies in the fact that, by bounded exhaustive
generation of test cases, in many cases, it becomes costly or infeasible to test
a piece of code for all valid bounded inputs, even for small bounds, due to the
large number of inputs obtained. Thus, a test criterion might be employed in
order to “prune” the test generation, achieving a bounded exhaustive coverage
of equivalence classes associated with the criterion. For instance, suppose that
one counts with a black box test criterion for a given program to test. If one
is interested in equivalence class coverage, it would be enough to generate a
single test input per each (feasible) equivalence class. On the other hand, by
bounded exhaustive generation one would be building all valid structures within
the provided bounds. Instead, we propose to do a kind of exhaustive generation,
but exploiting the possibility of pruning parts of the search space when one
is certain that all candidates in the pruned part correspond to classes already
covered.



More precisely, our proposed technique works based on the following observa-
tion. The test generation mechanisms that follow a bounded exhaustive, filtering
approach, generally contain a process for avoiding the generation of redundant
structures. Independently of how such processes are implemented, they all cor-
respond essentially to a pruning operation. For instance, the symmetry breaking
formulas that TestEra incorporates in the Alloy model resulting from a pro-
gram to be tested, instruct the underlying SAT solver to skip parts of the search
space (in this context, assignments to propositional variables), thus constituting
a pruning [7]. Similarly, UDITA prunes the search space to avoid isomorphic
structures by incorporating isomorphism avoidance into the object pool abstrac-
tion and the operations for obtaining new objects from it in the construction
of heap allocated structures [4]; Korat performs a similar pruning, imposing an
ordering in the objects of the same type in the process of building the heap allo-
cated structures [2]. Our approach proposes to take advantage of such pruning
processes but in a different way; instead of just eliminating isomorphic (redun-
dant) structures, we propose to take extra advantage of the pruning, and use it
for skipping portions of the search space that would produce test cases covering
classes that have already been covered by previous tests.

We present the approach by implementing it as a variant of the Korat al-
gorithm/tool [10]. This variant is based on the use of a routine that we call
eqClass(), that given a (valid) test input indicates which is the equivalence
class it corresponds to, according to a test criterion. Basically, our variant of
Korat, which we will refer to as Korat+1, works as follows: when a candidate is
found to be a valid test case, we invoke the eqClass() routine for this candi-
date, and look at what fields are observed to determine its equivalence class. We
then try to “skip” the structures that coincide, for the observed fields, with the
current candidate. Clearly, for any other candidate with the same values in these
observed fields, its equivalence class would be the same as that of the current
candidate.

We describe our approach in detail, via the mentioned variant of Korat. We
provide examples and case studies together with their associated experimental
results, using some black box test criteria. As it will be shown later on, our
variant results in significant improvements, compared to Korat’s search, for some
of our case studies. As it is further explained later on, in some cases we were
able to reduce the search space substantially, as well as to produce significantly
less test cases, compared to bounded exhaustive generation. As we mentioned
before, the technique results to be between bounded exhaustive, and “optimal”
equivalence class coverage.

1 Korat+ is only a variant of Korat that we present in this paper, for illustrating our
technique. The name Korat+ is used only for reference purposes in the presentation
of our approach. We fully acknowledge that the Korat tool and algorithm, as well as
the name Korat, are the intellectual property of the authors of [2], and the technique
we present, which could be applied in other contexts, should not be associated with
the name Korat+.



2 Preliminaries

In this section we describe the Korat algorithm, which we use to present our
technique. We also introduce a motivating example to drive the presentation.

2.1 The Korat Algorithm

Korat is an algorithm, and a tool implementing it, that allows for the generation
of test cases composed of complex, heap allocated, structures [2]. Suppose, for
instance, that we need to test a procedure that takes as a parameter a sorted
singly linked list. Let us consider the following definition of the structure of
sorted singly linked lists (a variant of SinglyLinkedList, as provided in Korat’s
distribution):

class SortedSinglyLinkedList { class Node {

Node header; Integer elem;

int size; Node next;

} }

A list is composed of a reference to a header node, and an integer value in-
dicating the length of the list. The linked list of nodes starts with a header
node with no element (a traditional dummy node); the actual contents of the
list starts from the second node. The list should be acyclic, sorted (disregarding
the header node), and the number of nodes in it minus one (the header) should
coincide with the size value of the list. Korat can be used to generate such
lists automatically, so that the procedure under analysis can be tested. Korat
requires two routines accompanying the class associated with the input (in our
example, SortedSinglyLinkedList). One of them is a boolean parameterless
routine, called repOk() [8], that checks whether the structure satisfies its rep-
resentation invariant. In our case, repOk() should check that the header is not
null, and that no element is stored in it, that the list is acyclic and sorted, and
the number of nodes in it minus one coincides with the value of the size field,
as we explained before. The other routine that Korat requires is a finitisation
procedure, that provides the bounds for the domains involved in the structure.
This routine indicates the range for primitive type fields (e.g., that size in
SortedSinglyLinkedList goes from 0 to 3), and the minimum/maximum num-
ber of objects of the classes involved in the structure (e.g., 1 list, 0 to 4 nodes,
1 to 3 integer objects).

Korat generates all possible valid structures within the provided bounds. By
valid we mean that they satisfy the repOk() routine. For our example, this
means that Korat will generate all acyclic sorted singly linked lists with dummy
header, where the size coincides with the number of nodes in the linked list
minus one, of size at most 3, containing integers from 1 to 3. In order to do so,
Korat builds a tuple, where each entry corresponds to a value of a field of the
involved objects. In our example, the tuple would have length 10, two values for
the header and size of the lone list object, and the other 8 for the corresponding



two fields of the four nodes that the list might at most contain. For instance,
the following tuple

〈0, 0,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL〉

would represent the empty list (where the first zero in the tuple is the reference
to the first node object). Each entry in this tuple has a domain, which is defined
by the finitisation procedure. Korat’s actual algorithm works on what are called
candidate vectors, vectors that represent the candidate tuples, but where the
actual entries are replaced by indices into the respective domains. For instance,
the candidate vector 〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉 would correspond to the previously
shown candidate tuple (each tuple entry has the first possible value in its domain,
i.e., the value with index 0, except for the first entry, the head of the list, which
points to the first node). Typically, most of the candidate vectors correspond to
invalid structures, i.e., structures that do not satisfy the repOk(). Indeed, the
space of candidates is in our example 3,200,000 (55 × 45), but there exist only
8 singly sorted linked lists (up to isomorphism, as it will be explained later on),
within the provided bounds.

Korat exhaustively explores the space of candidate vectors, using backtrack-
ing with a sophisticated pruning mechanism. More precisely, Korat works as
follows: it starts with the initial candidate vector, with all indices in zero. It
then executes repOk() on this candidate, monitoring the fields accessed in the
execution, and storing these in a stack. Korat will then use this stack in order
to backtrack over candidate vectors, as follows. If the current candidate satisfies
repOk(), it is considered a valid test case (in this case, all reachable fields must
be in the stack of accessed fields). If repOk() fails, then the candidate is dis-
carded. In order to build the next candidate, Korat increments the last accessed
field to its next value. If one or more of the last accessed fields are already in
their corresponding maximum values, then these are resetted to 0, and the field
accessed before them is incremented. If all fields are already at their maximum
values, then the state space of candidate vectors has been exhaustively explored,
and Korat terminates.

Notice that when repOk() fails, not all reachable fields might have been ac-
cessed, since its failure might be determined before exploring all reachable fields
(for instance, in our example, if the first two nodes of the list are unordered, then
repOk() fails without the need to explore the remaining part of the structure).
Backtracking only on accessed fields is what enables Korat to prune large parts
of the space of candidate vectors. It is sound since if the last accessed field is
not modified, the output for repOk() would not change due to its determinism,
(i.e., the parts of the structure visited by repOk() would remain the same, and
therefore repOk() would fail again).

Besides the described search mechanism, with its incorporated search prun-
ing, Korat also avoids generating isomorphic candidates [2]. Basically, two can-
didates are isomorphic if they only differ in the object identities of their con-
stituents (i.e., if one of the candidates can be obtained from the other by chang-
ing the object identities). Most applications do not depend on the actual iden-
tities of objects (which represent the memory addresses or heap references of



objects), and thus if one generated a structure, it is desirable to avoid gener-
ating its isomorphic structures, whose treatment would be redundant. Korat
avoids generating isomorphic candidates by defining a lexicographic order be-
tween candidate vectors, and generating only the smallest in the order, among
all isomorphic candidates. Basically, when considering the range of a class-typed
field (i.e., its possible values) in the construction of candidates during the search,
it is restricted to up to one “untouched” (i.e., not previously referenced in the
structure) object of its corresponding domain. For example, suppose that in the
construction of candidates one needs to consider different values for a given posi-
tion i in the candidate vector. Suppose further that the ith position corresponds
to a class domain D, and no fields of that domain have been accessed before i in
the last invokation of repOk(). Then the only possible value for the i-th position
is 0. More generally, if k objects of domain D have been accessed before in the
last invokation of repOk(), these must be indexed 0 to k − 1, and thus the ith
position can go from 0 to k, but not beyond k. Korat’s pruning and isomorphism
elimination mechanisms allow the tool to reduce the search space significantly,
in many cases. For our example, for instance, Korat explores only 319 out of
the 3200000 possible cases, for linked lists with length 0 to 3, up to 4 nodes,
and values ranging in integer objects from 1 to 3. For more details, we refer the
reader to [2, 10].

3 Incorporating Black Box Coverage to Bounded

Exhaustive Search

In this section, we describe our proposal for improving a filtering approach to
bounded exhaustive generation, by incorporating pruning associated with test
criteria. Essentially, the approach is based on the observation that in many cases,
the number of valid test cases, bounded by a value k, can be too large even for
small bounds, and therefore evaluating the software under all these cases might
be impractical. Then, our intention is to skip the generation of some test cases;
the idea is to avoid generating test cases whose corresponding equivalence classes,
for the test criterion under consideration, have already been covered. The idea is
not to do “optimal” equivalence class coverage (one per equivalence class), but
to approximate somehow to bounded exhaustive generation. That is, we would
like to do a kind of bounded exhaustive generation, but with some pruning based
on what the test criterion provides as information.

We present the approach by implementing it as a variant of the Korat algo-
rithm, introduced in the previous section. In the same way that Korat requires an
imperative predicate repOk(), we require a routine that we call eqClass(). This
routine returns, given a valid candidate (i.e., a candidate satisfying repOk()),
the equivalence class the candidate corresponds to, according to a test criterion.
As for repOk(), this routine must be deterministic for exactly the same rea-
son that repOk() must be deterministic. As opposed to Korat, which prunes
(advances various candidates at once) only when repOk() fails, since if it does
not fail all reachable fields must be in the stack of accessed fields, we prune



the search space both when repOk() succeedes and when it fails: when repOk()

fails, we advance various candidates at once using the fact that if none of the
accessed fields is changed, then repOk() would fail again. When repOk() suc-
ceedes, we execute eqClass() and monitor the accessed fields; we then advance
various candidates at once to force a change in the last accessed field, since if
none of the accessed fields changes the equivalence class would be the same of
the previous valid candidate, which is already covered.

In order to better understand how this mechanism works, let us briefly expand
our example. Suppose that we need a procedure listAsSet that, given a list l
and a set s, both implemented over linked lists, determines whether s is the
result of converting l to a set, i.e., disregarding repetitions and the order of
elements in the list. From an implementation point of view, and taking into
account the representation invariant of sets over singly linked lists, s should be
the result of removing repetitions and sorting the list l. It is not difficult to
find contexts in which a procedure of the kind of listAsSet is relevant. An
obvious application of such a function would be an oracle for checking whether
a list-to-set routine works as expected. If we want to generate test cases for
listAsSet, we need to provide two objects, namely an arbitrary (acyclic) singly
linked list of integers (the list l), and a strictly sorted acyclic singly linked list
(the “set” s); the repOk() routine for this pair of objects checks first whether l is
acyclic, and if so, it then checks whether s is acyclic and strictly sorted. Korat’s
candidate vectors will be composed of values for the fields of all objects of the
two lists. Moreover, suppose that our test criterion takes into consideration all
the combinations of four predicates:

– the first list is empty
– the first list has repeated elements
– the first list is sorted
– the second list is empty

The criterion is satisfied if at least one test case is produced for each of the sat-
isfiable combinations of the truth values for the above predicates. Now, suppose
that, in the search for valid candidates, Korat constructs the following pair of
lists (for the linked list and the “set”, respectively):

header

N0

header’

N0’ N1’

1

Let us refer to this pair of lists as (l,s). Clearly, (l,s) satisfies repOk(). Let us
analyse how Korat would proceed. Since repOk() is satisfied, Korat will move
to the next candidate, which corresponds to advancing the last accessed field,
i.e., N1’.next, assuming that repOk() checks the representation invariants of l
and s in this order. Furthermore, because of the way repOk() works, Korat will
produce all valid sets “greater than” (in the sense of the order in which Korat
produces them) s, in combination with the empty l, before advancing l, i.e.,
producing a nonempty list.



Now let us analyse how our approach would proceed. According to the test
criterion described before, this pair of lists corresponds to the equivalence class
〈T, F, T, F 〉 (i.e., the first list is empty, with no repeated elements and sorted,
whereas the second one is nonempty). In order to determine the equivalence class
for this test case, the parts of the structure that are examined are header (N0),
N0.next, header’ (N0’), N0’.next, in this order. Thus, if none of these fields
are modified, the candidates produced would correspond to the same equivalence
class as our current candidate (l,s), which is already covered by this valid
candidate. So, the approach “prunes” the search by attempting to advance the
last accessed field, namely N0’.next, which is already at its maximum possible
value (due to the rule of “at most one untouched object”). We move then to
trying to advance header’, which again is at its maximum for the same reason
as before, and thus we start considering greater values for N0.next. Notice how
we avoided generating many (nonempty) sets, which in combination with the
empty list would cover an already covered equivalence class. For example, if
the finitisation procedure establishes that both lists have 0 to 4 nodes, and
integers go from 1 to 3, then the described pruning, associated with our approach,
constructs 679 candidates (320 of which are valid), skipping the construction of
14000 candidates (240 of which are valid, but cover already covered classes) that
Korat would generate.

3.1 Soundness of the Approach

Let us argue about the soundness of the approach with respect to equivalence
class coverage, i.e., that any valid test case in the pruned state space corre-
sponds to a previously covered equivalence class. For comparison purposes, let
us introduce a pseudo-code description of the standard Korat algorithm:

function korat() {

Vector curr = initVector;

Stack fields = new Stack();

boolean ok;

do {

(ok, fields) = curr.repOk();

if (ok) {

reportValid(curr);

fields.push(curr.reachFields - fields);

}

field = fields.pop();

while (!fields.isEmpty() &&

curr[field] >= nonIsoMax(curr, fields, field)) {

curr[field] = 0;

field = fields.pop();

}

if (!fields.isEmpty()) curr[field]++;

} while (curr != lastVector && !fields.isEmpty())

}



In this pseudo-code description of the algorithm, we make an abuse of no-
tation and make repOk(), which applies to candidate vectors, return both the
result of executing this function on the corresponding vector (a boolean, indi-
cating whether the candidate is a valid one or not) and a stack with the fields
accessed in the execution (fields). Notice how the backtracking is performed
on the fields accessed by repOk(); also, when the current vector is valid, then all
reachable fields are forced into the accessed fields, so that these are considered
for backtracking and no candidates are missed. Finally, notice that an auxil-
iary function called nonIsoMax, which returns the maximum index possible for a
given field, is used in order to determine the range of values for each field. This
is crucial for the generation of nonisomorphic instances [2].

Our technique, which in this context we present as a variant of Korat re-
ferred to as Korat+, performs an extra pruning. It works by “popping out”
more items from fields, the stack of accessed fields. In order to perform this
pruning, the algorithm needs to compute the equivalence class for each valid can-
didate, monitoring the fields accessed in this computation (stored in eqFields).
It then checks whether Korat’s standard “next candidate” computation already
advanced some of the fields accessed by the eqClass() routine, and if not it
forces such an advance. The pseudo-code for our variant is the following:

function koratPlus() {

Vector curr = initVector;

Stack fields = new Stack();

boolean ok;

do {

(ok, fields) = curr.repOk();

if (ok) {

reportValid(curr);

fields.push(curr.Fields - fields);

(eqClass, eqFields) = curr.eqClass();

reportEqClass(eqClass);

}

List modified = new List();

field = fields.pop();

while (!fields.isEmpty() &&

curr[field] >= nonIsoMax(curr, fields, field)) {

curr[field] = 0;

modified.add(field);

field = fields.pop();

}

if (!fields.isEmpty()) {

curr[field]++;

modified.add(field);

}

// extra pruning

if (ok &&

(eqFields - modified == eqFields)) {

for each field in modified {



curr[field] = 0

}

boolean found = false;

while (!fields.isEmpty() && !found) {

field = fields.pop();

if (eqFields.contains(field)) {

found = true;

}

else {

curr[field] = 0;

}

}

if (found) {

while (!fields.isEmpty() &&

curr[field] >= nonIsoMax(curr, fields, field)) {

curr[field] = 0;

field = fields.pop();

}

if (!fields.isEmpty()) {

curr[field]++;

}

}

}

} while (!fields.isEmpty())

}

Guaranteeing the soundness of this pruning approach is relatively straightfor-
ward. First, notice that the backtracking order of the original Korat algorithm
is preserved: Korat+ backtracks over fields, the fields accessed by repOk().
Our variant can only “pop” more items, but not modify the accessed fields (and
thus the order of backtracking) in any other way.

Let us see that this new pruning can only skip valid candidates of already
covered classes. Suppose that this new pruning stage is activated. Then, the
previous candidate, which we will refer to as vp, is a valid candidate, since ok is
true; moreover, the standard Korat computation of the next candidate did not
modify any of the fields accessed by eqClass(). This last pruning stage modifies
the last field, according to fields, appearing in eqFields. Let v be a candidate
vector pruned by this process. Assume further that v is a valid candidate. Since
this candidate was pruned in this extra pruning, it corresponds to the pruned
search space, which coincides in its values of the eqFields with vp. Then, v

corresponds to the same test equivalence class as vp, due to the determinism of
eqClass(). Therefore, the candidates pruned in the extra pruning stage corre-
spond to the same equivalence class of vp, which has already been covered by
this test case.



4 Case Studies

We now describe some of the case studies we selected for assessing the tech-
nique. At the end of this section we will briefly analyse the experimental results
associated with these case studies.

listAsSet. Our first case study corresponds to the listAsSet routine, and the
black box test criterion described before, which requires covering all combina-
tions of the predicates “first list is empty”, “first list has repeated elements”,
“first list is sorted”, and “second list is empty”. The repOk() and eqClass()

routines have been implemented as described in Section 3. This is a simple case
study, with few equivalence classes, but it is still an interesting “toy” case study
which serves the purpose of showing the benefits of the technique.

The experimental results are shown in the table below. The scope indicates
the size ranges for the two lists (as separated scopes), the maximum number of
nodes in each list (as separated scopes), and the number of different integer values
allowed, respectively. For Korat and Korat with coverage pruning (Korat+), the
table shows the number of explored vectors, together with how many of these are
valid test cases (i.e., satisfying repOk()). We also indicate the time taken by both
algorithms, and the number of classes covered (CC) for the corresponding scope
(the covered classes are the same for Korat and Korat+, due to the soundness
of the technique).

Scope Korat Korat+ Time Korat Time Korat+ CC

0-2,0-2,3,3,3 1,121(91) 185(26) 0.331s 0.249s 8

0-4,0-4,3,3,3 1,485(91) 211(26) 0.277s 0.241s 8

0-4,0-4,4,4,3 14,679(320) 679(80) 0,422s 0,269s 10

0-5,0-5,5,5,4 1,274,977(5,456) 6,798(682) 2,39s 0,395s 10

0-5,0-5,5,5,5 6,692,357(24,211) 16,369(1,562) 10.961s 0.586s 10

0-7,0-7,7,7,6 - 1,453,804(111,974) TIMEOUT 3,36s 10

Binomial Heap (Merge). Our second case study consists of generating test data
for binomial heaps. A fundamental operation of binomial heaps is the merge of
two heaps, which can be performed very efficiently for this structure. Assuming
one is interested in testing such a routine, it is necessary to provide pairs of
binomial heaps. The merging of two binomial heaps depends very much on how
these are composed, and the degrees of their composing binomial trees. Consid-
ering equivalence class partitioning as the black box test criterion, the following
predicates should provide a suitable coverage:

– the first heap is empty,
– the second heap is empty,
– the first heap has more elements than the second,
– both heaps have the same number of elements,
– the first heap has a larger degree than the second,
– both heaps have the same degree, and
– the heaps contain a tree with the same degree.



We have used the implementation of binomial heaps, with its corresponding
repOk(), exactly as provided in the Korat distribution, replicated for the two
binomial heaps. The domains for each of these have been defined disjoint, in the
finitisation procedure. The experimental results regarding this case study are
shown in the table below. The scope indicates the maximum number of elements
both heaps might have. The keys in the nodes range from zero to this value
(repeated elements are allowed). The table shows the number of explored vectors,
together with how many of these are valid test cases. We also indicate the number
of equivalence classes covered, and the times taken by the two algorithms.

Scope Korat Korat+ Time Korat Time Korat+ CC

2 348(36) 147(15) 0,42s 0,394s 6

3 5,389(784) 1,315(56) 0,656s 0,454s 10

4 150,448(14,400) 46,786(435) 1,436s 0,86s 10

5 3,125,314(876,096) 647,410(1,872) 16,347s 2,492s 10

6 274,808,123(57,790,404) 55,745,855(43,134) 1360,323s 178,072s 10

Directed Graphs. Our third case study corresponds to generating test cases for a
routine manipulating a directed graph. The implementation of directed graphs
is a standard object oriented implementation, consisting of a vector of vertices,
each of which has a corresponding strictly sorted linked list, its adjacency list.
Suppose that one is interested in generating case studies of varied arc “densities”
and covering border cases; so, the combined graph characteristics considered for
equivalence class partitioning could be the following:

– emptiness,
– density, and
– completeness.

The experimental results for this case study are shown in the table below. The
scope indicates the exact number of nodes in the directed graph. As for the
previous cases, the table shows the number of explored vectors, together with
how many of these are valid test cases, the number of classes covered, etc. Notice
that the number of valid cases grows too quickly, preventing us from reporting
results for scopes higher than 3.

Scope Korat Korat+ Time Korat Time Korat+ CC

2 1,624(382) 518(126) 0,343s 0,265s 4

3 372,861,255(47,672,840) 11,670,154(899,852) 1145,341s 37,854s 4

Weighted Directed Graphs. Our fourth case study extends the previous one, to
generating test cases for weighted directed graphs. The graph implementation is
an extension of the one described above, in which each entry in the adjacency
list of a vertex has a corresponding weight.

Some typical algorithms on weighted directed graphs are calculations of tran-
sitive closure or minimal path information, as for instance using Floyd’s al-
gorithm. From the definition of minimal path some representative equivalence
classes can be defined, based on properties of the graph:



– acyclicity,
– presence of negative weights, and
– connectedness of the graph.

They all play significant roles in the calculation of transitive closure or minimal
path information. Thus, these are adequate predicates to consider for equivalence
class coverage. In order to also get cases of varied arc “densities” and cover
border cases, we also take into account emptiness, density and completeness of
the structure, as for the previous case study. The experimental results for this
case study are shown in the table below. The scope indicates the exact number
of nodes in the directed graph, and the range for weights. As for the previous
cases, the table shows the number of explored vectors, together with how many
of these are valid test cases, the number of classes covered, etc.

Scope Korat Korat+ Time Korat Time Korat+ CC

2,-1-1 1,062(332) 984(256) 0.326s 0.324s 11

2,-2-2 2,272(1,542) 1,750(1,022) 0,632s 0,534s 11

3,-1-1 18,003,420(493,232) 17,815,155(304,982) 55.483s 52.759s 13

3,-2-2 33,122,848(15,612,660) 25,486,513(7,976,340) 278.562s 169.82s 13

3,-3-3 205,397,228(187,887,040) 103,127,315(85,617,142) 2812,665s 1333,942s 13

Search Tree (Delete). Our last case study is concerned with deletion in search
trees. In this case, the test data to generate is composed of a combination of a
search tree and a value to be deleted from it. The search tree implementation we
considered is the one provided in the Korat distribution. The test case equiva-
lence classes in this case correspond to the “position” of the value to be deleted
in the tree; we have chosen the following cases:

– the value is not in the tree,
– the value is in the root,
– the value is in a leaf,
– the value is in a node with two (nonempty) subtrees,
– the value is in a node with a left subtree only, and
– the value is in a node with a right subtree only.

The experimental results for this case study are shown in the table below. The
scope indicates the maximum number of nodes in the tree, the range for the size
of the tree, and the number of keys allowed in the tree.

Scope Korat Korat+ Time Korat Time Korat+ CC

3,0-3,3 534(45) 500(43) 0.272s 0.251s 8

3,0-3,4 1,152(148) 1,011(125) 0.255s 0.271s 8

3,0-3,6 4,290(822) 3,331(586) 0,423s 0,359s 8

3,0-3,8 12,144(2,760) 8,675(1,793) 0.661s 0.562s 8

5,0-5,8 477,888(29,416) 338,292(16,137) 1,607s 1,333s 9

6,0-6,9 4,597,299(167,814) 3,213,270(83,511) 7,529s 5,724s 9



4.1 Analysing the Assessment of our Case Studies

Let us briefly discuss now the results of our experimental analyses on our case
studies. First, notice that we have chosen to report, for each of the case studies,
the number of explored candidates, accompanied by the corresponding number
of valid candidates found. This is, in our opinion, the most reasonable measure to
employ if one is interested in evaluating the level of pruning that our technique
contributes to standard filtering. In our cases, these numbers reflect directly
in running times, because our eqClass() routines, the most influencial (with
respect to running time) part of the extra pruning section of our variant of
Korat, do not increase in a noticeable way the running times of Korat for the
scopes considered in these case studies. However, we only report the running
time for generation. One would expect that this would also reflect in the time
necessary for actually testing for the produced inputs. All the experiments were
run on a 3.06GHz Intel Core 2 Duo with 4GB of RAM, and the reported data
correspond to experiments that terminated within our timeout of 5 hours.

The performance of the technique, in this case implemented as a variant of
Korat, depends greatly on the quality of repOk() and eqClass(), and how these
relate to each other. For instance, in cases in which eqClass() needs to visit the
whole structure in order to determine the equivalence class for the test case, there
will be no extra pruning at all; this is due to the fact that the “next candidate”
computation of Korat would have already advanced one of the fields observed
by eqClass(), since it “observes everything”. So, the technique provides better
results when the test criterion under consideration is such that examining a small
part of the structure one can determine a test case’s equivalence class. This is
exactly the case in our two first case studies, in which the technique exhibits a
better profit.

Another important factor in the performance of our technique implemented
as Korat+ compared to Korat is in the size of the “valid candidates” space over
the search space. More precisely, when repOK() fails very often, i.e., when the
conditions for valid structures are stronger, then Korat exploits its associated
pruning mechanism. It is when repOK() succeedes more often than it fails when
Korat+ contributes more to the pruning, since while Korat would advance to
the next candidate with no pruning, our extra pruning mechanism would try
to prune candidates corresponding to the just covered equivalence class. Notice
that when for Korat the number of valid test cases is large in comparison with
the number of explored candidates (repOK() succeedes more often), our extra
pruning tends to contribute more to the pruning.

We have tried to foresee potential threats to the validity of our experimental
results. We tried to be careful about the chosen case studies. Although our
case studies correspond to relatively small pieces of code, they represent, in our
opinion, rather natural testing situations in the context of the implementation of
complex, heap allocated data structures (which is the main target for Korat). We
have accompanied the presentation of each case study by a short justification of
its appropriateness. We have included in our evaluation some case studies that
have been successfully tackled by Korat, employing the same implementation



available with Korat’s distribution (for which repOK() routines are tailored to
exploit Korat’s search process).

One might argue that the equivalence classes used in these cases might prune
too much, i.e., that these would show good pruning but would not be helpful
for finding bugs. We decided then to take the three case studies for which we
achieved more pruning, and make an analysis of how good would the obtained
test suites be for finding bugs. These case studies are list as set, binomial heaps
and search trees. We took three programs, namely standard implementations of
listToSet, merge and deleteFromTree, for these structures, and performed the
following experiment. We used muJava [9] in order to generate all method mu-
tants of these three programs, and employed the test cases produced by Korat,
by Korat+ and optimal equivalence class coverage (i.e., “one per equivalence
class”), to see how many mutants can be killed by each of these test suites. The
mutants are those obtained by the application of 12 different method-level mu-
tation operators, e.g., arithmetic, logical and relational operator replacements,
etc. (see [11] for a complete list of method level mutation operators). Not all of
these mutation operators were applicable to our programs (6 were applicable to
list as set, 5 were applicable to binomial heaps, and 4 were applicable to search
trees). The results obtained are shown in the tables at the end of this section.
Each table shows the total number of mutants and how many remained live af-
ter testing using the corresponding test suite. Notice that the results for Korat
correspond to optimal mutant killing, since their corresponding test suites are
bounded exhaustive (i.e., Korat kills as many mutants as possible within the cor-
responding bounds). In order to obtain a test suite for optimal equivalence class
coverage (one per equivalence class), we take the first test case of each equiva-
lence class from the bounded exhaustive test suite produced by Korat. As these
experiments show, we achieve better results compared to one per equivalence
class, and as the bounds are increased we get closer to bounded exhaustive test
suites. Our intuition of being somehow “in between” optimal equivalence class
coverage and bounded exhaustive is supported by the results.

List as Set (49 mutants)

Scope Korat Korat+ One Per Class

0-2,0-2,3,3,3 3 9 15

0-4,0-4,3,3,3 3 9 15

0-4,0-4,4,4,3 3 9 11

0-5,0-5,5,5,4 3 9 10

0-5,0-5,5,5,5 3 9 10

Binomial Heaps (117 mutants)

Scope Korat Korat+ One Per Class

2 38 39 44

3 8 8 17

4 7 7 17

5 7 7 17

6 7 7 17

Search Trees (24 mutants)

Scope Korat Korat+ One Per Class

3,0-3,3 2 2 2

3,0-3,4 2 2 2

3,0-3,6 2 2 2

3,0-3,8 2 2 2

5,0-5,8 0 0 2

6,0-6,9 0 0 2



5 Conclusions and Future Work

We have presented a technique for improving bounded exhaustive test case gen-
eration using a filtering approach, by incorporating black box test criteria and
employing these for pruning the search of valid test inputs. The approach tar-
gets structurally complex inputs, and essentially consists of incorporating into
the usual pruning processes present in test generation techniques, an extra prun-
ing that skips parts of the search space when one is certain that only candidates
of classes of inputs already covered would be found. We implemented this tech-
nique as a variant of Korat, a tool/algorithm that automatically generates test
cases by a “generate and filter” mechanism [2] . We argued about the technique’s
correctness, and developed some case studies, whose associated experimental re-
sults enabled us to assess the benefits of the technique. The technique is somehow
in between bounded exhaustive and “optimal” equivalence class coverage, and
the actual “exhaustiveness” of the technique depends on the interaction of the
test criterion (e.g., the adequacy of the predicates used for equivalence class cov-
erage) and the generation procedure. This is reflected by the fact that, in our
implementation, the performance depends on the quality of the repOk() and
eqClass(), and how these relate to each other. In particular, when eqClass()

roughly respects the order in which repOk() visits the fields of the structure,
and in cases in which a relatively small part of it suffices to determining its
equivalence class, the technique is more beneficial. We also found that standard
Korat works well when the valid test cases are relatively few with respect to the
number of general structures, i.e., when the restrictions for the structure to be
valid are stronger. In these cases, repOk() fails often, and thus Korat’s pruning
improves the search significantly. On the contrary, when repOk() does not fail
very often, Korat’s pruning is not exercised much. These are the cases in which
our technique shows more profit. For instance, structures such as directed acyclic
graphs or linked lists show better results than structures such as red black or
AVL trees.

Automatic test case generation is an active area of research. For the particular
case of bounded exhaustive test case generation of structurally complex, heap
allocated inputs, various tools have been proposed. Among these we may cite
Java PathFinder [15], Alloy [5], CUTE [12] and obviously Korat. A thorough
comparison between these tools, reported in [13], shows that Korat (seen as a
kind of specialised solver) is generally the most efficient, justifying our selection
of Korat for implementing the technique. Although our approach is implemented
for Korat, the technique applies to other tools that perform bounded exhaustive
generation by filtering. Examples of such tools would be Alloy [5], UDITA [4]
(which also supports a generative approach) and AsmL [1].

As future work, we plan to develop a more significant evaluation of our tech-
nique, over larger source code than that used in the experiments presented in
this paper (these experiments were limited to a number of case studies regard-
ing heap allocated data structure implementations, and a few algorithms over
these). We are also currently exploring the use of SAT based analysis for test
case generation guided by test criteria, exploiting the scalability improvements



achieved in [3]. We plan to continue this line of work by exploring the paralleli-
sation of the approach (e.g., by combining the pruning with mechanisms such as
those in [14]), as well as by defining generic (i.e., not user provided) mechanisms
for considering inputs to be similar. This would enable us to implement a similar
technique, without the need for a user provided test criterion.
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