
Abstraction based Automated Test Generation
from Formal Tabular Requirements

Specifications

Renzo Degiovanni1, Pablo Ponzio1, Nazareno Aguirre1, and Marcelo Frias2

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
and CONICET, Ŕıo Cuarto, Córdoba, Argentina.

E-mail: {rdegiovanni,pponzio,naguirre}@dc.exa.unrc.edu.ar
2 Departamento de Ingenieŕıa Informática, Instituto Tecnológico Buenos Aires and

CONICET, Buenos Aires, Argentina. E-mail: mfrias@itba.edu.ar

Abstract. We propose an automated approach for generating tests from
formal tabular requirements specifications, such as SCR specifications.
The technique is based on counterexample guided abstraction refinement
and the use of SMT solving. Moreover, in order to effectively perform au-
tomated test generation, we take advantage of particular characteristics
of tabular requirements descriptions to aid the abstraction and abstrac-
tion refinement processes. The exploited characteristics are, most no-
tably, the organisation of the requirements specification in modes, which
is used to build an initial abstraction, and the execution model of tabu-
lar specifications, which is directed by changes observed in environment
variables and is exploited for modularising the transition relation as-
sociated with tables, simplifying the calculation of abstractions. These
characteristics enable us to effectively perform automated test genera-
tion achieving good levels of coverage for different criteria relevant to
this context.
We compare our approach with a standard abstraction analysis, show-
ing the benefits that exploiting the mentioned characteristics of tables
provide. We also compare the approach with model checking based gen-
eration, using several model checking tools. Our experiments show that
the presented approach is able to generate test cases from models whose
complexity, with respect to the sizes of variables and data domains, can-
not be coped with well by the model checkers we used.

1 Introduction

It is generally accepted that the quality of requirements specifications has a great
impact in the whole development process, since crucial activities such as valida-
tion against user expectations, system verification against requirements, and the
coherence of the requirements (and therefore also the system to be developed),
depend on these specifications. Requirements specifications are mostly expressed
in natural language, in textual form. Various approaches deal with this informal
textual representation, and how its quality can be improved and assessed. How-
ever, formal requirements specifications may provide useful features, difficult to

achieve if informal notations are used. More precisely, formally specified require-
ments are better suited for analysis and its automation, which can be exploited
for (semi-)automatically finding problems in the specification itself (inconsis-
tencies, imprecisions, etc.), and contrasting the specification against the system
(i.e., verification), or user expectations (i.e., validation).

Tabular notations, originally used to document requirements by D. Parnas
and others [13], have proved to be a useful means for concisely and formally
describing expressions characterising complex requirements. Indeed, tables have
been successfully incorporated into various formalisms for requirements speci-
fication, most notably those reported in [16, 11]. Tables are used for formally
describing various relations involved in requirements, such as the expected re-
lationship between the observed and controlled environment variables once the
system is put in place, assumptions about the environment due to conditions
external to the system, or the relations that the system must maintain with the
environment. Tables impose a structure on specifications, which provides useful
features: it helps in organising large and complex formulas into well distinguished
smaller formulas that are easier to follow, and impose simple constraints for guar-
anteeing characteristics such as certain forms of completeness (no missing cases)
and consistency (no contradicting requirements).

In this paper, we are concerned with the automated analysis of formal tabular
notations. More precisely, we propose the use of automated analysis techniques
for generating tests based on requirements specifications. The approach we use
for test generation is a variant of a lazy abstraction mechanism for automated
analysis, and relies on scalability mechanisms that take advantage of the tab-
ular structure of the specifications, i.e., exploiting characteristics inherent to
the tabular specifications. This variant yields, in this context, performance en-
hancements, compared to standard lazy abstraction. It is automated, based on
counterexample guided abstraction refinement and the use of SMT solving. Tests
from tabular specifications correspond to executions of the requirements specifi-
cation, i.e., sequences of events and states respecting the constraints prescribed
by tables. These tests have an obvious role in the validation, i.e. contrasting with
user expectations, and verification, i.e., contrasting against system behaviour.
Moreover, they can also help in identifying problems in the specification (e.g.,
missing cases, contradictory statements, etc.). Especially for complex require-
ments, coming up with a test suite that “exercises” the specification under a
good variety of cases (i.e., complying with particular coverage criteria) can be
extremely difficult.

Especially for validation and verification, activities in which the engineer
needs to compare the behaviours expected by users and the actual system be-
haviour against the formal specification of requirements, it is useful that the
tests (i.e., the execution traces over the specification) maintain the level of de-
tail of the original specification. Usually, due to analysis reasons, the engineer
needs to manually simplify the specifications, so that analysis tools can deal
with these; if test cases are generated from these simplified models, then they
have to be “concretised” before contrasting them with the expected or actual

system behaviours, in order to disregard spurious tests resulting from the ab-
straction. This obviously complicates the validation and verification tasks. Our
approach attempts to deal with specifications at their original level of abstrac-
tion, generating an abstraction level suitable for test generation, but producing
(non spurious) test cases at the level of abstraction of the original specification.
For some case studies we are able to generate test cases which several model
checking tools are unable to cope with, in particular due to the sizes of variables
and data domains of the models.

Our approach is based on the following few observations regarding formal
tabular requirements specifications:

– In tabular requirements specifications, a special set of variables, known as
mode classes, are employed in order to organise the states of the system
into modes; mode changes are described via corresponding (mode) transition
tables.

– The execution model of tabular specifications is directed by changes observed
in environment variables, whose alterations are observed once at a time.

– The definition of variables involved in a tabular specification lead to a depen-
dency relation which is inherently acyclic. Each symbol describes a different
specification element, thus ruling out aliasing in specifications.

– Tabular requirements specifications often involve numeric variables, whose
ranges are often larger than what automated tools (e.g., model checkers) are
able to handle.

Contributions of this paper. The contribution of this paper is an approach for
automatically generating tests based on formal tabular requirements specifica-
tions. The approach is automated, based on abstraction and counterexample
guided abstraction refinement. The underlying technology supporting the ap-
proach is SMT solving, but the actual benefits come from the identification of
the above elements, inherent to this kind of specifications, and mechanisms to
exploit them in order to contribute to the abstraction. The technique exploits
the above described characteristics of tables in the following way:
– Modes and mode transitions are employed as part of the initial abstrac-

tion of the specification. This provides important analysis benefits, as we
will demonstrate later on, especially because both properties to be analysed
and the structure of tables in the specification typically strongly depend on
modes. We also observe that states within a mode tend to coincide in the
level of “preciseness” for analysis, which we exploit to define our variant of
lazy abstraction.

– The execution model of tabular specifications and the inherent acyclic de-
pendence of syntactic elements in tabular requirements specifications are
exploited for modularising the transition relation associated with tables ac-
cording to monitored variables changes, and their dependencies. This allows
us to speed up the calculation of abstractions, as well as reuse calculations.

– We define a technique for dealing with discrete numeric datatypes in ab-
stracting tabular specifications, so that the degree of detail that is necessary

to incorporate as part of the abstraction refinement in relation to numerical
variables is “localised” to parts of the abstract state space. As we show later
on, this leads to better scalability when dealing with numerical variables in
tabular specifications.

The above ways of exploiting tabular specifications significantly contributes to
the abstraction process. We show the benefits of our approach by assessing it, in
comparison with standard abstraction, for various case studies. We also use these
case studies to compare the technique with several model checking tools, used
for test case generation from requirements specifications. The technique is able
to generate test cases from models whose complexity, with respect to the sizes
of variables and data domains, cannot be handled well by the model checkers we
used.

It is important to notice that our approach does not constitute a testing
criterion. Our technique is a test generation mechanism, which, provided a test
criterion, allows for the automated generation of test cases according to the
test criterion. We refer the reader to [?] for a thorough description of testing
strategies applied to tabular specifications.

Related work. Tabular notations, in particular SCR, have associated tool support
providing different kinds of analysis, e.g., syntax checking, consistency analysis
via theorem proving and model checking, and the verification of properties of
requirements [2, 6, 12]. With respect to testing, the simulator in the SCR toolset
[12] allows the developer to load specific scenarios, which are in principle pro-
vided by the engineer, and check whether certain associated assertions are vio-
lated or not in the particular executions described by the scenarios. Gargantini
and Heitmeyer [10] used a model checker for automatically obtaining tests (table
executions) transiting through particular modes. Recently, Fraser and Gargan-
tini [9] made a thorough comparison between various model checkers (symbolic,
bounded, explicit state, etc.) in order to automatically generate test cases from
tables, and analysed the achieved coverage and scalability issues. Our evaluation
of the technique is based on case studies analysed by Fraser and Gargantini, and
our comparison with model checkers uses Fraser and Gargantini’s employment
of model checkers for test case generation from tables. Bultan and Heitmeyer
[6] recently employed the ALV infinite state model checker to analyse tables;
we do not report results using ALV for test case generation because the tool is
discontinued, and in our preliminary experiments with it other model checkers
exhibited better performance for this task.

To our knowledge, automated abstraction techniques have been applied to
tabular requirements specifications infrequently, particularly for testing pur-
poses. In [5] Bharadwaj and Heitmeyer applied abstraction to SCR specifica-
tions, for scalability purposes related to model checking. As opposed to our
work, Bharadwaj and Heitmeyer’s approach is based on the removal of irrelevant
variables (slicing), and the transformation of “internal” variables into input ones
(i.e., monitored), with the aim of removing monitored variables; given a property
to be verified, their abstraction is fixed, it does not admit refinement.

Many successful approaches to verification and test generation have been
proposed. Some of these are based on SMT solving, abstraction, combinations
and variants. Most works target code analysis rather than requirements spec-
ifications. In particular, lazy abstraction with abstraction refinement based on
interpolation was used for automatically generating tests leading to the reach-
able locations of a program, with successful applications in device drivers and
security critical programs [4]. Other related and successful approaches are re-
ported in [15, 7]. Our approach is based on that presented in [4], which employs
lazy abstraction [14] for test generation, but targets requirements specifications.
Requirements specifications are not “control intensive”, as the programming do-
mains in which abstraction is successfully applied [8], thus constituting a novel
interesting domain. The behavioural model corresponding to SCR specifications
has a significant degree of nondeterminism, leading to high levels of “interleav-
ings”, which makes it difficult to apply techniques that work well in control
intensive environments. Other automated tools such as Pex [19] and JPF [20]
successfully implement automated white box test case generation for .NET and
Java programs, respectively. These target code, and are based on symbolic exe-
cution instead of predicate abstraction with automated refinement.

2 Preliminaries

Tabular Requirements Specifications. Tables provide an unambiguous yet
clear and concise way of writing formulas. This has been found to be particularly
useful for describing complex requirements of software systems, most notably in
the work of D. Parnas and collaborators [13], and in the SCR method [16, 11].
Our presentation is based on SCR because it is a very good representative of
formal requirements languages using tables, which has extensive tool support
and many real specifications to assess analysis techniques. In the SCR method-
ology, requirements are specified following Parnas’ four-variable model [18]. In
this context, tables are used, among other things, for describing REQ, the re-
quirements as a relationship that the system should induce between monitored
and controlled variables, environment variables that the system is able to ob-
serve and control, respectively. In order to describe this relationship, SCR uses
events, conditions, mode classes and terms. Events occur when changes in the
variables observed by the system take place, and conditions are logical expres-
sions referring to these variables. Modes represent classes of states of the system
(the values of particular variables called mode classes), and typically capture
historical information of the system [5]; terms are functions on the variables of
the specification. For describing events, SCR provides a simple notation. The
notation @T(c) WHEN d describes the event in which expression c becomes true,
when d is true in the current state, i.e., it represents the expression c’ ∧ c ∧ d,
where the primed expression refers to the next state. If d is true, the ‘WHEN’
section is not written.

Let us consider an example, taken from [5]. Suppose that one needs to specify
a safety injection system, whose task is to control the level of water pressure

(a) Mode class mcPressure (b) Controlled var. cSafetyInjection

(c) Term tOverridden

Fig. 1. Tabular specification of the Safety Injection System

of a nuclear plant’s cooling system. The system monitors the water pressure,
and a couple of switches for blocking and resetting (represented by monitored
variables mWaterPres, mBlock and mReset, respectively), and it controls a single
boolean variable, indicating whether the safety injection system is on or off
(controlled variable cSafetyInjection). Usually the behaviour of the system
depends on a number of previous events or conditions (i.e., the history); these
are characterised by the so called modes of the system (possible values of mode
classes). In this case, a single mode class, mcPressure, whose corresponding
modes are TooLow, Permitted and High, indicates whether the water pressure is
considered to be too low (below a constant Low), in a permitted level or high (over
a constant Permit), respectively. Basically, the system must start safety injection
when the pressure becomes too low. The system can be “disengaged” via the
switches, indicating that its actions are overridden. This is captured by a term
tOverridden. Tables are used to define dependent symbols, i.e., mode classes,
terms and controlled variables. Basically, tables are of two kinds: event tables,
to define symbols whose changes are driven by the occurrences of events, and
condition tables, which define symbols in terms of conditions over other symbols.
Mode changes depend on events, and are described via special event tables,
the mode transition tables. For the safety injection system, table in Figure 1(a)
indicates how system modes change when certain events occur. For instance,
when the system is in mode TooLow and the water pressure becomes higher
than or equal to Low, the mode changes to Permitted (see first row of the mode
transition table). Term tOverridden is defined via the event table in Figure 1(c).
This table indicates exactly when the system actions are overridden (e.g., if the
block switch is pressed while in any mode other than High, with the reset switch
off). Finally, the controlled variable cSafetyInjection is defined via a condition
table, shown in Figure 1(b). Tables have associated well formedness conditions.
For instance, the disjunction of all conditions in a row of a condition table must
be True, to ensure completeness (no missing cases), and the conjunction of any
pair of different cells in the same row must be False (disjointness), to ensure no
contradictions.

A finite run is a sequence σ = s0, s1, . . . , sk of states such that s0 satis-
fies some specified initial condition, and every state si+1 is obtained from its
predecessor si by modifying a single monitored variable mV , and propagating
the modifications of all variables depending on mV , according to what is pre-
scribed by the corresponding tables. Variables not depending on mV maintain
their corresponding values in si. The change in a monitored variable that trig-
gers the move from a state to another can be interpreted as an input event,
while the resulting changes in controlled variables can be interpreted as the out-
put. Thus, a run is a sequence of input events and corresponding outputs. For
example, consider the state s = 〈High, 150, on, off,True, off〉, corresponding
to the values of mcPressure, mWaterPres, mBlock, mReset, tOverridden and
cSafetyInjection, respectively; from state s, the input event mWaterPres’ =

mWaterPres-1 takes the system to the state 〈Permitted, 149, on, off,False, off〉,
assuming that Permit = 150.

Abstraction. A labelled transition system (LTS) S = (S,Σ,→) consists of
a set S of states, a finite set Σ of labels, and a labelled transition relation
→⊆ S ×Σ ×S. A region structure R = (R,⊥,t,u, pre, post, [.]) for an LTS S is
a structure consisting of a set R of regions, where each region r represents a set
[r]3 of states of S; ⊥ represents the empty set of states, r t r′ and r u r′ are the
union and intersection operators of [r] and [r′], respectively; pre(r, l) and post(r, l)
are the weakest precondition and strongest postcondition operators with respect
to labels (e.g., pre(r, l) returns the largest region such that, from all its states and
traversing arcs labelled by l one arrives at states in r), respectively. We denote
by r ⊆ r′ the fact that [r] ⊆ [r′], and by r ≡ r′ that [r] = [r′]. An abstraction
structure A = (R, preA, postA,E) for an LTS S consists of a region structure R
for S, abstract pre and post operators preA and postA, and a precision preorder
E, such that pre(r, l) ⊆ preA(r, l), post(r, l) ⊆ postA(r, l), and preA and postA are
monotonic with respect to (E∩ ⊆). A region r can be thought of as representing
an abstract state, in some abstract state space, whose concretisation is [r], with
the abstract operators preA and postA enabling abstract state propagations. The
precision preorder E indicates how close the abstract pre and post operators are
to the concrete ones, for given regions.

A particular way of abstracting a state space is via predicate abstraction. In
this context, regions are characterised by sets of state properties called support
predicates, and the concretisation is simply the set of states satisfying the corre-
sponding predicates. More precisely, let S = (S,Σ,→) be an LTS, and P a set
of predicates over S (i.e., for every p ∈ P , [p] ⊆ S). An abstraction structure
AP (S) = (RP (S), preAP , postAP ,EP) can be defined, as follows:
– RP (S) = (R,⊥,t,u, pre, post, [.]), where the regions in R are pairs (ϕ, Γ),

with Γ ⊆ P being a finite set of (local) support predicates, and ϕ is a boolean
formula over the predicates of Γ . The remaining elements of RP (S) are
defined as follows: ⊥= (false, ∅); (ϕ, Γ)t (ϕ′, Γ ′) = (ϕ∨ϕ′, Γ ∪Γ ′); (ϕ, Γ)u
(ϕ′, Γ ′) = (ϕ ∧ ϕ′, Γ ∪ Γ ′); pre((ϕ, Γ), l) = (ϕpre

l , Γls) where ϕpre
l is the

3 [.] : R → 2S is the function that maps each region to the set of states it represents.

weakest precondition of ϕ with respect to l and Γls is the least superset of
Γ which contains all predicates in ϕpre

l . Operator post is defined in a similar
way. The concretisation [(ϕ, Γ)] of (ϕ, Γ) is defined as [ϕ] (the set of states
satisfying ϕ).

– The abstract operator postAP is defined as follows: let (ϕ, Γ) be a region
with ϕ = ϕ1∨· · ·∨ϕk in DNF (with support predicates as atomic formulas),
and l be a label. postAP ((ϕ, Γ), l) is the disjunction ψ1∨ψ2∨ · · · ∨ψk, where
each ψi is a conjunction of all literals γ appearing positively or negatively in
Γ , and such that ϕi ⇒ pre(γ, l). The operator preAP is defined in a similar
way.

– E is defined in the following way: (ϕ, Γ) E (ϕ′, Γ ′) iff Γ ⊇ Γ ′.
This characterisation corresponds to lazy predicate abstraction, as introduced in
[14]. The process is called lazy because the abstraction predicates are local to the
regions, enabling the refinement of the portions of the abstract computation tree
that require it. The lazy predicate abstraction algorithm is a symbolic forward
search algorithm with the capability of refining the abstract regions as needed.

Given an abstraction structure A, an initial region r0 and an error region
ε, the procedure tries to verify that ε is not reachable in the abstract model
by constructing an abstract reachability tree. Each node can be in one of two
states: unmarked (not yet treated) or marked (already treated). The algorithm
starts by creating an unmarked initial node with region r0. It then iterates, by
taking an unmarked node n, and doing one of the following steps, depending
on the characteristics of n: (i) if the region of n intersects ε, then the abstract
error region is reachable; (ii) if n’s region has already been covered, i.e., it is
included in the join of marked nodes, then n is marked too; (iii) if n’s region
does not intersect ε and has not been covered, then n is marked, the abstract
successors of n’s region, with respect to postA and all labels, are calculated, and
new unmarked nodes are created to hold these regions.

The algorithm terminates, in principle, when the error region is reached, or no
unmarked nodes remain. When the error region is reached, i.e., an abstract trace
leading to an error is found, it remains to check whether the counterexample is
spurious or not. This is done by checking the feasibility of the abstract trace. If
it is feasible, a real counterexample has been found; if not, then a new suitable
predicate can be added to one of the regions to refine the abstraction, removing
the spurious counterexample. The abstract computation subtree with the refined
region as a root has to be recalculated, and the process can continue. If the
formalism to express the predicates is chosen appropriately, both the feasibility
of the abstract trace and the calculation of a suitable predicate to refine the
abstraction can be done automatically.

A way of computing suitable predicates to add to the regions in the above
abstraction setting is via the use of interpolation [17]. Let us suppose that σ =
ϕ1, ϕ2, . . . , ϕk is a sequence of formulas such that their conjunction is inconsistent
(e.g., these formulas might correspond to an abstract counterexample trace). An
interpolant for σ is a sequence of formulas ψ0, ψ1, . . . , ψk such that: (a) ψ0 = True
and ψk = False, (b) ∀1 ≤ i ≤ k ·ψi−1 ∧ϕi ⇒ ψi, and (c) ∀1 ≤ i ≤ k · vars(ψi) ⊆

vars(ϕ1, . . . , ϕi) ∩ vars(ϕi+1, . . . , ϕk). Given an abstract spurious trace σ, the
interpolants provide suitable predicates to add to each of the regions in the
trace so that σ is ruled out as an abstract behaviour.

3 Abstracting Requirements Specifications

We now define an abstraction for tabular requirements specifications. A main
hypothesis in our construction is that modes structure the tabular specifications
in a way that is relevant to many properties of interest on tables, particularly
those having to do with test case generation. Thus, exploiting this structure for
abstraction may provide significant benefits. Moreover, we base the construction
on lazy abstraction motivated by the fact that, when the system is in different
modes it generally has different capabilities, i.e., it responds to different input
events and in different ways; so, quite possibly different kinds and levels of preci-
sion might be necessary when the system is in different modes. Since we want to
make the process automated, we choose linear integer arithmetic (LIA), one of
the formalisms behind the SMT solver MathSAT [?] which we use as a decision
process for calculating and refining abstractions, as our abstract domain. This
language, which due to space restrictions we do not describe here, is expressive
enough for our needs. For the interpolants, we use difference logic, a sublanguage
of LIA for which MathSAT is able to calculate interpolants automatically. This is
essential for making the abstraction refinement process completely automated.

Let us start describing the construction. First, an SCR requirements speci-
fication Spec corresponds to an LTS SSpec = (S,E,→T), where S is the set of
all possible values for variables in the specification, E is the set of events on
monitored variables (i.e., input events), and →T contains a tuple (si, e, sj) iff
sj is obtained from si as a consequence of input event e and the propagation
of changes to all variables according to what is prescribed by the tables in Spec
[5]. The set R of regions for our abstract domain is MSpec×LIA×℘(LIA), with
MSpec being the set of modes in Spec, and LIA and ℘(LIA) the domains of for-
mulas and sets of formulas in LIA, respectively. The concretisation of a region
is defined as follows: [(m,ϕ, Γ)] = {s ∈ S|s |= ϕ and m is the mode of s}. The
formula ϕ must be a conjunction of literals based on predicates from Γ as atomic
formulas. As it can be noticed in the definition of R, the current mode of the
system is an essential part of a region, meaning that the abstraction is precise
with respect to “mode location”. If the specification has more than one mode
class, MSpec would correspond to the cartesian product of mode classes. The
remaining elements of our region structure RSpec are defined in a standard way,
from SSpec.

As we explained previously, in a lazy setting the support predicates are local
to regions. In our case, and for the reasons explained at the beginning of this
section, the support predicates will be made local to a mode. That is, all regions
that share the mode will also share the support predicates. Given a mode m, we
will denote by SP(m) the current set of support predicates for mode m.

In order to complete the definition of our abstract domain ASpec, we have to
define the abstract operators preASpec and postASpec , and the precision preorder
ESpec. Since the approach is based on a forward construction, we concentrate
on the definition of postASpec (preASpec is defined similarly). Our abstract opera-
tor postASpec is defined as follows: for every region (m,ϕ, Γ) and input event l,
postASpec((m,ϕ, Γ), l) is the set of all tuples (m′, ψ, Γ ′), such that:

– m′ is reachable from m via l,
– Γ ′ = SP(m′), and
– ψ is the conjunction γ1∧· · ·∧γk, where each γi is a literal appearing positively

or negatively in Γ ′, and ϕ⇒ pre(γi, l).

Finally, the precision preorder ESpec is defined in the following way: for every
pair of regions (m,ϕ, Γ) and (m′, ϕ′, Γ ′), (m,ϕ, Γ) ESpec (m′, ϕ′, Γ ′) iff Γ ′ ⊇ Γ .

The proofs of pre((m,ϕ, Γ), l) ⊆ preASpec((m,ϕ, Γ), l), post((m,ϕ, Γ), l) ⊆
postASpec((m,ϕ, Γ), l), and the monotonicity of preASpec and postASpec with respect
to (ESpec ∩ ⊆), are relatively straightforward.

Let us provide a very simple example illustrating the above definition of
postASpec . Consider the specification of the safety injection system given previ-
ously. Suppose that, for each of the three modes, the following are the current
support predicates:

– TooLow: tOverridden, mWaterPres < Low

– Permitted: tOverridden, mWaterPres < Low, mBlock = on

– High: tOverridden, mWaterPres >= Low, mBlock = on, mReset = on

Consider the abstract region r = 〈Permitted,True,False,False〉. Its successor
with respect to postASpec and the event mWaterPres’ = mWaterPres-1 is the
disjunction of r itself, and 〈TooLow,True,True〉. Similarly, the successor of r
with respect to the event mWaterPres’ = mWaterPres+1 is the disjunction of r,
〈High,False,True,False,False〉 and 〈High,False,True,False,True〉.

This algorithm works essentially in the same way as the lazy abstraction
algorithm explained previously, but using our abstract strongest postcondition
operator. More precisely, given a property of interest P whose reachability needs
to be analysed, the process starts with the initial abstract state, with only P
as a support predicate; it then starts calculating the abstract reachability tree
using postASpec , trying to reach an abstract state satisfying P and refining the
regions via interpolants resulting from spurious counterexamples. Whenever a
new predicate is added to the support predicates of a region r, the same predicate
is incorporated to all regions of nodes whose modes coincide with that of r;
similarly, when a new region is incorporated, this region “inherits” the support
predicates of its corresponding mode, as the definition of postASpec indicates.

When no unmarked nodes remain and P has not been reached, then P is
unreachable. If a concrete trace reaching a state satisfying P is constructed, a
concrete run witnessing the reachability of P is obtained. The process can how-
ever “diverge” when the number of support predicates for some region becomes
too large to be dealt with.

As opposed to the original lazy abstraction approach, our abstraction is pre-
cise with respect to mode location, and that support predicates are local to

modes instead of regions. Experimenting with tabular specifications, we found
out that as support predicates are discovered, these tend to be shared (i.e., would
be “rediscovered” by the original algorithm) by abstract states with the same
mode. Adding these predicates to all regions with the same mode enabled us to
improve the construction of the abstraction. This fact is related to the “shape”
of the LTS corresponding to a tabular specification, in which every state admits
changes in any of the monitored variables (i.e., the LTS is not “control inten-
sive”, as opposed to some applications of abstraction for automated analysis [8]).
Another important difference of our approach has to do with the mechanism for
checking whether a state is covered or not. While the standard lazy abstraction
algorithm keeps the value of the already computed symbolic abstract space (the
join of all the already computed regions) and a decision procedure is employed
to check if the current node is included there, our approach looks at all the other
nodes within the same mode, to see if there is another one weaker than the cur-
rent. This last check can be done without the use of a decision procedure, since
all the nodes with the same mode share the same predicates.

Modularising the Transition Relation. Given a (concrete) state of the system and
an event, the transition relation leads to a process for computing the next state:
when a monitored variable changes, the tables are looked up to update other
variables whose values depend on the change of the monitored variable. The
modularity of the transition relation defined by the tabular structure, together
with the variable dependencies and the absence of aliasing, can be straight-
forwardly used to “localise” changes, and save time in the calculation of the
next state. We can do something similar for the case of computing the abstract
successors of an abstract state. However, taking into account the structure of
our abstraction states, we modularise the transition relation in a different way.
Basically, we take the global state transition relation T , as defined by the ta-
bles, and for each monitored variable mV, we produce transition (sub)relations
Tm1

mV, . . . , T
mk

mV, where m1, . . . ,mk are the modes of the specification. Each Tmi

mV

corresponds to the transition subrelation associated with the behaviour of the
tables when the monitored variable that changes is mV, and the current mode is
mi. This modularisation is straightforward to obtain from the tables, and is sim-
ilar to a kind of “cone of influence” approach. The acyclicity of the dependency
between symbols of the specification and the absence of aliasing enables us to
perform this modularisation of the transition relation easily. As we show in the
following section, this modularisation provides an important benefit with respect
to the calculation of abstract successors, since besides the simplifications in the
calculations of concrete weakest preconditions (notice that these are necessary
for computing abstract successors), it enables us to identify predicates whose
current boolean value will not be altered, since none of its associated syntac-
tic elements depends on the modified variable that changed. The next section
provides an evaluation of the benefits of this modularisation.

Treating Numerical Domains. A characteristic that our abstraction process is
sensitive to is the use of large numerical domains in the models. These numeri-

cal domains are rather common in SCR requirements specifications, so we need
to propose a mechanism to deal with these. Basically, the problem has to do
with our lazy abstraction having support predicates local to modes. This means
that whenever a location s needs to incorporate a support predicate (because of
abstraction refinement), that predicate is added to all locations with the same
mode as s. Suppose that the behaviours of the specification require the sys-
tem to be within a mode m along long “chains” of successive numerical values
for some variable before producing a change to a mode m′. What would typi-
cally happen is that the abstraction refinement process will need to introduce
support predicates for distinguishing all these successive values of the variable
(in our case, these support predicates will be introduced by the interpolation
process), in order to remove spurious counterexamples taking the system from
m to m′. All these support predicates will be associated with a single mode
(m), making our abstraction process impractical. In order to deal with this
problem, we use a heuristics that consists of introducing intervals over these
numerical variables. Basically, we learn from short executions of the abstraction
process which numerical variables potentially have the issue we just described.
We then take these variables, partition their domains in a number of intervals,
and make support predicates to be local to mode, and corresponding domain
interval. The actual degree used to partition intervals is calculated from the
size of the numerical domain being partitioned, and the maximum number of
support predicates for a location; notice that locations corresponded to modes,
whereas now they will correspond to a mode, and intervals for the numerical
variables that require partitioning. Consider, for instance, the safety injection
system described previously. Suppose also that variable mWaterPres’s range is
[0..5000], and it changes in steps of 1..10 (decrementing or incrementing a value
in this range). The refinement based on interpolation will then introduce sup-
port predicates mWaterPress ≤ 0, mWaterPress ≤ 10, mWaterPress ≤ 20, and
so on. So, if we do not want to introduce more than 20 support predicates
(per location) associated with mWaterPres, then we would introduce intervals
0 ≤ mWaterPres ≤ 199, 200 ≤ mWaterPres ≤ 399, 400 ≤ mWaterPres ≤ 599,
and so on, to define the new, finer locations. That is, these intervals are now part
of the locations, meaning that abstraction refinement will be local to a mode and
interval of mWaterPres.

Generating Test Cases from Tables using Abstraction. Test case generation via
predicate abstraction is performed in a similar way as the generation using model
checking, as reported, e.g., in [4]. First, one needs to build all test predicates
corresponding to the coverage criterion of interest. Each of these test predicates
characterises a particular equivalence class of test cases, in the corresponding test
criterion; these are used as “trap properties”, one at a time, for the abstraction
algorithm to produce concrete traces reaching the predicates.

For each test predicate P , we run the algorithm and obtain three possible
outputs:
– the abstract state space is covered without reaching P , meaning that the

corresponding test case equivalence class is infeasible, or

– a concrete run reaching P is produced (i.e., a test case), or
– the process does not converge, and is stopped due to timeout, exhausted

memory or any other resource related problem (e.g., excessive introduction
of support predicates). In this case the process is inconclusive, and the cor-
responding test predicate is marked as an error, as these are called in [9].

We perform the test case generation using two stages. First, we use a so called
cartesian abstraction, in which different but related abstract states are combined
into a single representation; this is equivalent to having three possible values for
support predicates: true, false or *, the latter meaning “don’t care”. In this
way the number of states that need to be handled for the test case generation,
but the interpolation based refinement might fail (since we are not dealing with
actual abstract runs, but sets of abstract runs, when using these cartesian ab-
stract states). Whenever the interpolation process produces, for a given mode, a
support predicate that has already been introduced previously, we stop the test
generation process for the current test predicate, and move to a second stage,
in which the abstraction is “precise” (i.e., non cartesian), for this test predicate
(the remaining test predicates will be treated first with cartesian abstraction, and
then precise abstraction if necessary). This latter process, the precise abstraction,
has no issues regarding abstraction refinement, but its scalability diminishes.

Reusing Calls to the Decision Procedure. Given a particular test criterion, the
corresponding test predicates are in general related in some way to each other.
For instance, in table coverage predicates correspond to cells of tables; two dif-
ferent predicates originating in the same table might, for instance, share a row,
meaning that they coincide in the mode, or share a column, meaning that the
resulting value is the same, or if in different columns, in the same table, the
satisfaction of one of these implies the unsatisfiability of the other, and vice
versa. So, the predicates discovered while covering a particular test predicate P
might also be relevant for the covering of other test predicates of the same test
criterion. For this reason, we “cache” the calls to the decision procedure while
computing abstract successors in the covering of a test predicate, so that these
calculations can be reused in the covering of other test predicates within the
same test criterion. This resulted to be fruitful, as we show in the next section.

4 Experimental Results

The contents of our experimental results section are two fold. First, we provide an
evaluation of our approach in comparison with standard predicate abstraction,
which enables us to assess the benefits of our variant that exploits characteristics
of tables. Second, we compare our approach with automated test case generation
based on model checking. The experiments are based on some of the case studies
presented in [9], where a thorough comparison between different model checkers
used for test generation is carried out. Therein, a number of test criteria, such
as table coverage and modified condition decision coverage, relevant to tabular
specifications are used. We generate test cases for the same criteria, and refer

the reader to [9] for a description of these. The case studies in [9], some of which
we also use in this paper, are models available in the literature, regarding a
cruise control system (ccs), a safety injection system (sis), an aircraft’s autopi-
lot (autopilot), and a car overtaking protocol for coordinating smart vehicles
(car3prop). Our models differ, for part of the experimentation, from the ones
used in [9]; for assessing the benefits that exploiting characteristics of tables
provides, compared with lazy abstraction, we use essentially the same models
as in [9], which have been manually simplified (by using smaller constants and
numeric ranges, mostly). However, in order to compare our approach with model
checking test generation we use versions of the case studies which are larger than
those in [9], i.e., where the sizes of constants and numeric ranges are larger (basi-
cally, at the level of abstraction of the textual descriptions of the corresponding
systems). For instance, autopilot reduced deals with integer variables in the
range [0..500], while the original autopilot, which we use for comparison with
model checkers, has these same variables over the range [0..10000]. As we men-
tioned previously, we are interested in this because, especially for validation and
verification, it is important to generate test cases at the same level of abstraction
expected by the user, and/or used in the implementation. All the experiments
were run on an 2.6GHz Intel Core 2 Duo with 3GB of RAM (2.5GB maximum
memory set for the analysis tools), running GNU/Linux 2.6.

The following table compares, for three case studies (sis, car3prop and
autopilot), standard predicate abstraction (PA, i.e., support predicates are
globally shared by regions, modes are not part of the initial abstraction, no mod-
ularisation of the transition relation with respect to monitored variables/modes),
with PA plus support predicates local to modes and these considered in the ini-
tial abstraction (PA + m.), PA plus modularised transition relation with respect
to monitored variables/modes (PA + mt.), and finally our approach (PA + m.
+ mt.). The data corresponds to the total number of test predicates for a test
criterion, the number of runs of each technique, and the corresponding numbers
of covered (i.e., those for which a test case was generated), infeasible (those
that the corresponding technique identified as unrealisable), and uncovered test
predicates (i.e., errors, those in which the corresponding technique is inconclu-
sive). For the covered test predicates, we also indicate between parentheses the
number of traces, since a single trace can cover several test predicates. When
any individual run of any of the processes executed for over an hour, it was
stopped and the corresponding test predicate marked as uncovered. Notice that
we marked the models autopilot and sis as “reduced”, meaning that they have
been manually simplified with respect to the original description, by using small
constants and numerical ranges. These models are the same as those used in [9]
(car3prop is not reduced because it has no numerical constants or ranges).

CS car3prop (498 TPs.) sis reduced (91 TPs.) autopilot reduced (409 TPs.)
runs c/i/u time runs c/i/u time runs c/i/u time

PA 110 402(14)/90/6 33620 19 80(4)/11/0 8496 21 395(7)/10/4 23497
PA + m. 114 401(17)/96/1 8858 21 80(10)/11/0 5319 81 347(19)/10/52 113401
PA + mt. 118 402(22)/74/22 69197 20 80(9)/11/0 13032 51 389(31)/10/10 22201

PA + m. + mt. 119 402(29)/96/0 1795 23 80(12)/11/0 4724 54 399(44)/10/0 3951

In our approach, support predicates are local to modes instead of regions. We
argued that, due to the structure of tables, regions with the same mode tend
to share the support predicates. In order to validate this hypothesis, we have
randomly chosen a few test predicates, and gathered the number of savings
in predicate discovery associated with the “support predicates local to regions”
approach. Basically, we measure for standard lazy abstraction and our approach,
the number of nodes visited and introduced support predicates, and for standard
lazy abstraction also the support predicate with largest number of “rediscoveries”
for different regions with the same mode. These results are summarised in the
following table.

CS Lazy Lazy + m. + mt.
nodes predicates most repeated nodes predicates

car3prop 41 94 30 76 11
car3prop 48 75 33 75 8

sis reduced 916 158 50 936 65
sis reduced 113 25 8 113 17

autopilot reduced 1037 126 21 1192 32
autopilot reduced 965 126 21 1120 32

Models involving numeric variables over large ranges, such as sis, are those in
which “support predicates local to regions” provides more benefits.

We now compare our technique, referred to in the tables as “Lazy abs. +”,
with model checkers used for test generation. Our experiments are based on those
presented in [9], so we compare our technique with Spin, NuSMV, Cadence SMV
and SAL. The four case studies used for the assessment are the ones mentioned
above, using larger more realistic constants and numeric ranges, compared to
the models used in [9]. We have run these tools with a variety of settings, and
we report the best result obtained for each tool, in the table at the end of this
section. When a tool is not mentioned for one of the case studies, that is because
it performed significantly worse than other model checkers. As opposed to the
previous experiments, and because we have increased the sizes of the models,
we set the timeout for covering single test predicates to 3 hours, and the total
analysis time for a test criterion to 2 days. We report the number of individual
runs for each technique, the covered, uncovered (nor covered, nor identified as
infeasible, referred to as errors) and infeasible test predicates, the total time for
the generation (in seconds), and the largest trace produced. For our technique,
we also mention the number of automated refinements that were necessary. As
our experimental results show, our technique is able to deal with the generation
in cases in which model checkers fail to do so. Let us explain our assessment of
the experiments reported in the table at the end of this section. Notice that,
whenever Spin is able to generate a test case, it does so very fast, but being an
explicit state model checker, it generally runs out of memory quickly for models
with large numerical domains. In specifications such that car3prop and sis,
with either small ranges for integer variables or relatively few interleavings (due
to having a small number of monitored variables), model checkers perform very
well, being able to generate test cases much faster than our technique. On the
other hand, for specifications such as ccs and autopilot, with large ranges for
numerical variables and several monitored variables (leading to a higher degree

of interleaving), model checkers perform poorly and our technique shows better
profit.

Runs Tests Time Max. Trace Rfnmts.
Cov. Errors Infeas.
autopilot (409 test predicates)

Spin 169 288(48) 121 0 2351 168 -
NuSMV 409 0 409 0 timeout - -
Cad. SMV 378 36(5) 373 0 timeout 13 -
SAL/SMC 296 116(3) 293 0 timeout 6 -
Lazy abs. + 62 390(43) 10 9 164003 127 7099

ccs (582 test predicates)
Spin 582 0 582 0 timeout - -
Cad. SMV 582 0 582 0 timeout - -
Lazy abs. + 120 494(32) 0 88 312 8 167

car3prop (498 test predicates)
NuSMV 142 402(46) 0 96 261.45 13 -
Cad. SMV 160 402(64) 0 96 77.58 10 -
SAL/BMC 133 402(37) 15 81 56.32 11 -
Lazy abs. + 125 402(29) 0 96 1795 9 1713

sis (91 test predicates)
Spin 19 80(8) 0 11 145.72 23515 -
NuSMV 27 80(16) 0 11 995.23 406 -
Cad. SMV 31 80(20) 0 11 420.34 402 -
SAL/SMC 27 80(16) 0 11 37.94 403 -
Lazy abs. + 24 80(13) 0 11 32742 402 2955

5 Conclusion and Future Work

We have identified a number of characteristics inherent to formal tabular require-
ments specifications that can be exploited for improving automated analysis for
test generation from these specifications. Indeed, we argued that certain features
of these specifications can be exploited for defining an abstraction process able
to effectively generate test cases, i.e., runs of the specification, corresponding to
a variety of test criteria relevant to tables. Basically, the identified characteristics
have to do with typical elements used by the engineer in the construction of the
formal specification, and the inherent behavioural model of tables. We have com-
pared our developed approach with test case generation from tables using some
model checkers, as well as with a standard abstraction approach not exploiting
the identified characteristics of tables. Our experimental results show that the
identified characteristics play a significant role in the scalability of abstraction
employed in test case generation from tables, and that the resulting technique
is able to deal better with some tabular specifications which, due to their com-
plexity with respect to the size of numerical ranges and constants present in the
model, and not handled well by some model checkers. The motivation for deal-
ing with “larger” specifications is straightforward: it contributes to scalability in
this analysis, and facilitates the validation and verification activities, for which
it is important that the generated tests maintain the level of abstraction/detail
expected by users, and present in the implementation. Although abstraction has
been successfully applied for test case generation via model checking, it has gen-
erally been applied in “control intensive” domains [8]. In contrast, requirements
specifications are not control intensive, thus constituting a challenging domain
to apply abstraction for test case generation. As our experiments show, directly

applying lazy abstraction for test case generation in the context of requirements
specifications does not perform well, so our variant, exploiting characteristics of
tables, shows its profit.

As future work, we plan to explore the use of terms for the abstraction, com-
plementing our current use of mode classes; this is motivated by the fact that,
according to [6], terms typically capture historical information, as modes do. We
also plan to apply the presented approach for the verification of specifications,
i.e., to guaranteeing the properties associated with the well formedness of tables,
as well as the verification of state and transition invariants over tabular specifica-
tions. We are also extending the ideas presented in this paper to the framework
for describing behaviours over tabular specifications presented in [1].

Acknowledgements

The authors would like to thank Angelo Gargantini, who kindly provided the
model checking specifications of the SCR models we used in our experiments, as
well as a prototype tool to automate test generation from tables using various
model checkers. This greatly simplified our experimental evaluation. We would
also like to thank the anonymous referees for their helpful comments.

This work was partially supported by the Argentinian Agency for Scientific
and Technological Promotion (ANPCyT), through grant PICT 2006 No. 2484.
The third author’s participation was also supported through ANPCyT grant
PICT PAE 2007 No. 2772.

References

1. N. Aguirre, M. Frias, M. Moscato, T. Maibaum and A. Wassyng, Describing and
Analyzing Behaviours over Tabular Specifications Using (Dyn)Alloy, in Proc. of
FASE 2009, LNCS 5503, Springer, 2009.

2. J. Atlee and J. Gannon, State-Based Model Checking of Event-Driven System Re-
quirements, IEEE Trans. Software Eng. 19(1), IEEE Press, 1993.

3. D. Beyer, A. Chlipala, T. Henzinger, R. Jhala and R. Majumdar: Generating Tests
from Counterexamples, in Proc. of ICSE 2004, IEEE, 2004.

4. R. Bharadwaj and C. Heitmeyer, Model Checking Complete Requirements Specifi-
cations Using Abstraction, Automated Software Engineering 6(1), Springer, 1999.

5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio and R. Sebastiani, The Math-
SAT 4 SMT Solver, in Proc. of CAV 2008, LNCS 5123, Springer, 2008.

6. T. Bultan and C. Heitmeyer, Applying Infinite State Model Checking and Other
Analysis Techniques to Tabular Requirements Specifications of Safety-Critical Sys-
tems, Design Automation for Embedded Systems, 12(1-2), 2008.

7. S. Chaki, E. Clarke, A. Groce, S. Jha and H. Veith. Modular Verification of Software
Components in C, Trans. on Software Engineering 30(6), IEEE, 2004.

8. E. Clarke, A. Gupta, H. Jain and H. Veith, Model Checking: Back and Forth between
Hardware and Software, in Verified Software: Theories, Tools, Experiments, LNCS
4171, Springer, 2008.

9. X. Feng, D. Parnas, T. Tse and T. O’Callahan, A Compari-
son of Tabular Expression-Based Testing Strategies, IEEE Trans-
actions on Software Engineering (to appear). Also available at
http://www.cs.hku.hk/research/techreps/document/TR-2009-19.pdf.

10. G. Fraser and A. Gargantini, An Evaluation of Model Checkers for Specification
Based Test Case Generation, in Proc. of ICST 2009, LNCS, Springer, 2009.

11. A. Gargantini and C. Heitmeyer, Using Model Checking to Generate Tests from
Requirements Specifications, in Proc. of ESEC/FSE 1999, LNCS, Springer, 1999.

12. C. Heitmeyer, R. Jeffords and B. Labaw, Automated consistency checking of re-
quirements specifications, Trans. on Soft. Eng. and Methodology, 5(3), ACM, 1996.

13. C. Heitmeyer, M. Archer, R. Bharadwaj and R. Jeffords, Tools for constructing
requirements specifications: the SCR Toolset at the age of nine, Computer Systems:
Science & Engineering, 20(1), 2005.

14. K. Heninger, J. Kallander, D. Parnas and J. Shore, Software Requirements for the
A-7E Aircraft, NLR Memorandum Report 3876, US Naval Research Lab., 1978.

15. T. Henzinger, R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in Proc. of
POPL 2002, ACM, 2002.

16. T. Henzinger, R. Jhala, R. Majumdar and K. McMillan, Abstractions from proofs
in in Proc. of POPL 2004, LNCS, Springer, 2004.

17. N. Leveson, M. Heimdahl, H. Hildreth and J. Reese, Requirements Specifications
for Process-Control Systems, Trans. on Software Engineering, 20(9), IEEE, 1994.

18. K. McMillan, Interpolation and SAT-Based Model Checking, in Proceedings of the
15th International Conference on Computer Aided Verification CAV 2003, LNCS
2725, Springer, 2003.

19. D. Parnas and J. Madey, Functional Documentation for Computer Systems, Science
of Computer Programming, 25(1), Elsevier, 1995.

20. N. Tillmann and J. Halleux, Pex-White Box Test Generation for .NET. In Proc.
of TAP 2008, LNCS, Springer, 2008.

21. W. Visser, C. Pǎsǎreanu and S. Khurshid, Test input generation with Java
PathFinder, in Proc. of ISSTA 2004, ACM, 2004.

