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Abstract. Various tools for program analysis, including run-time asser-
tion checkers and static analyzers such as verification and test generation
tools, require formal specifications of the programs being analyzed. More-
over, many of these tools and techniques require such specifications to be
written in a particular style, or follow certain patterns, in order to ob-
tain an acceptable performance from the corresponding analyses. Thus,
having a formal specification sometimes is not enough for using a partic-
ular technique, since such specification may not be provided in the right
formalism. In this paper, we deal with this problem in the increasingly
common case of having an operational specification, while for analysis
reasons requiring a declarative specification. We propose an evolutionary
approach to translate an operational specification written in a sequen-
tial programming language, into a declarative specification, in relational
logic. We perform experiments on a benchmark of data structure imple-
mentations, that show that translating representation invariants using
our approach and verifying invariant preservation using the resulting
specifications outperforms verification with specifications obtained us-
ing an existing semantics-preserving translation. Also, our evolutionary
computation translation achieves very good precision in this context.

1 Introduction

Many software validation and verification activities, both formal and informal,
require a description of the software under analysis, since many analyses typi-
cally consist in checking compliance of the software against some prescribed in-
tended behavior [12]. In the last few decades, formal specifications have gained
an important notoriety in such contexts, mainly due to their unambiguous in-
terpretation and the increasing availability of technologies for their automated
analysis, which are making them part of effective software analysis approaches.



Among the broad variety of formal notations, some styles or specification
paradigms can be identified. For instance, in the context of program specifi-
cation via pre- and postconditions, representation invariants, and the like, two
distinguishing styles are the operational, and the declarative. In the operational
style, specifications are captured through code, e.g., via a routine that checks
whether the internal representation of a given object is consistent [19]. On the
other hand, the declarative style often uses a logical formalism for expressing
the same kind of property. A well-established approach is based on using a first-
order logic complemented with closure operators, as put forward by notations
such as JML [3] and Alloy’s relational logic [14].

A problem that arises with the proliferation of notations and, more impor-
tantly, with the above described different specification styles, is that different
tools adopt different styles, and provide optimizations and enhancements that
only become available for such particular notations or styles. For instance, the
test generation tool Korat [2] requires a specification to be provided operationally
(as a repOK routine) to automatically produce test inputs; it implements “per-
fect” symmetry-breaking and search pruning techniques that are particularly tied
to such representation, and thus makes it very difficult (and ineffective) to gen-
erate tests for, say, an object-oriented program equipped with a JML contract.
On the other hand, tools for verification based on declarative notations, e.g.,
TACO [10], can exploit mechanisms such as tight bounds [9], whose computa-
tion are also strongly tied to declarative notations, and cannot straightforwardly
(nor effectively) be computed from operational specifications. This situation is
combined with the increasing need for cross-usage of automated analysis tools. A
sample scenario arises with current techniques for fault localization and program
repair, that require tests for their application; combining such tools with auto-
mated test generation is an obvious approach that combines automated analysis
technologies. This problem leads to a clear demand to be able to translate spec-
ifications across different styles and notations.

Notice that even when semantics-preserving translations are available be-
tween different formalisms, in many cases these produce translated specifica-
tions that, although “correct” in the sense that they preserve the semantics of
the original specifications, are ineffective for the analysis mechanisms of the tar-
get notations, due to the violation of (many times implicit) patterns for optimal
exploitation of analysis. For instance, Korat requires repOK methods to “fail as
soon as possible”, in the sense that these methods should try to decide when
a structure does not satisfy the predicate visiting the least possible elements of
the structure, for test generation to be effective. Similarly, the efficiency of tools
like Alloy are in many cases very dependent on how specifications are written;
analyzing specifications with large numbers of (existential) quantification often
fails during preprocessing (e.g., in translation to CNF to use SAT-based verifica-
tion), while expressing equivalent specifications through simple transformations
(e.g., skolemizations) can have a drastic impact in analysis efficiency. Thus, in
some cases the existence of semantics-preserving syntax-guided translations are
still unsatisfactory.



In this paper, we deal with a particular instance of the above described situa-
tion, namely the translation from an operational specification of a representation
invariant, written in an imperative sequential programming language, to a declar-
ative invariant specification, in relational logic. While there exists a semantics
preserving translation from one to the other, we show that the resulting specifica-
tions are inadequate for analysis. We then propose an evolutionary approach to
produce relational logic specifications from imperative ones, based on a genetic
algorithm especially designed for this purpose. We evaluate our approach on a
benchmark of data structure implementations, translating their corresponding
representation invariants for verification. As our experiments show, translating
specifications using our approach and verifying invariant preservation using the
resulting specifications outperforms invariant preservation verification directly
with specifications obtained using the semantics-preserving translation, and our
evolutionary computation translation achieves very good precision in this con-
text.

The remainder of the paper is organized as follows. In Section 2, we motivate
our approach by presenting an illustrating example, that in particular shows the
need to translate across different specification styles. In Section 3 we present our
evolutionary algorithm for learning declarative specifications from operational
ones, including detailed descriptions of how candidate specifications are captured
as chromosomes, and how these are evaluated during the genetic algorithm’s
search. In Section 4 we experimentally evaluate our approach, on a benchmark
composed of various data structure implementations. Section 5 compares our
technique with related work, and finally, in Section 6, we present our conclusions
and lines for further work.

2 A Motivating Example

In order to motivate our approach, let us consider an analysis scenario involv-
ing a simple data structure, singly linked lists. This data structure is captured
through classes SinglyLinkedList and Node, as defined in Figure 1. Assume,
for instance, that we would need to verify that a routine manipulating such data
structure, e.g., an insertion routine, preserves the representation invariant of
lists, i.e., inserting an element in a valid list retrieves also a valid list. In order to
proceed with this verification, we then need a specification of what it means for
singly linked lists to be valid. A particular specification, with a style put forward
in [19], consists in capturing the representation invariant of the structure (i.e.,
the intended validity condition for singly linked lists) through a boolean routine,
that checks whether the condition holds or not for a given structure. An example
of such method, named repOK() as is usual, indicating that singly linked lists
must be acyclic and their number of nodes must coincide with the value in the
size field, is shown in Figure 2.

A substantially different approach to the operational style of using code to
write specifications, is based on the use of some suitable logical formalism, for
the same task. This alternative approach has been extensively used, from the



public class SinglyLinkedList { public class Node {

private Node header; private int element;
private int size; private Node next;
} //setters and getters

//of the above fields

Fig. 1. Java classes defining singly linked lists.

public boolean repOK () {
Set<Entry> visited = new java.util.HashSet<Entry >();
visited .add (header);
Entry current = header;
while (true) {
Entry next = current.getNext ();
if (next = null) break;
if (!visited.add(next)) return false;
current = next;

if (visited.size() != size) return false;
return true;

Fig. 2. Operational version of the representation invariant for singly linked lists.

seminal work of Hoare and Floyd, where first-order logic is used to express asser-
tions regarding program states, to more modern languages such as JML [3] and
Alloy [14], which due to further expressive power needs, have extended first-order
logic with closure or reachability predicates. In particular, notice that first-order
logic is not sufficiently expressive to capture the acyclicity on singly linked lists,
in our example. A declarative predicate, expressed in Alloy’s relational logic,
and capturing exactly the same property as method rep0K() in Figure 2, is
shown in Figure 3. Notice how reflexive-transitive and transitive closures (de-
noted by operators * and ", respectively) are employed to capture reachability
and acyclicity.

To illustrate the need for effective translations across different specifica-
tion styles, suppose that we only count with the operational invariant, specified
through method repOK() in Java. While this specification is suitable for gen-
erating test inputs using Korat (in fact, this particular example is taken from
Korat’s set of case studies [17]), if we want to perform bounded verification us-
ing a tool like TACO [9,10], then this specification becomes unsuitable, since
TACO expects a logical specification. However, it is possible to translate an op-
erational specification into an equivalent declarative specification (equivalent in



one sig Null { }
sig List { }
sig Node { }

pred repOK[thiz: List, header: List-> omne Node+Null,
next: Node -> ome Node+Null] {
(all n: thiz.header.*next | n !'in n. next) and
(# thiz.header .*next = thiz.size)

Fig. 3. Declarative version of the representation invariant for singly linked lists, in
Alloy’s relational logic.

bounded contexts), e.g., using the translations embedded in tools like TACO |9,
10] and CBMC [18]. The logical specification resulting from the translation of
the repOK () method shown in Figure 2 is shown in Figure 4. This specification,
while correct with respect to the semantics of the original (again, for a partic-
ular bounded scope), is unsuitable for verification. For instance, verifying that
method insert preserves the representation invariant for lists of size at most 12
takes 3839 seconds when using the invariant in Figure 2, whereas it takes 1648
seconds when using the invariant in Fig. 3. As we will show later on in this pa-
per, such difference in efficiency becomes more notorious in more complex data
structure invariants (see the Validation Section).

The above described problem is the motivation for our approach. As we
explain in the following section, we will develop an evolutionary algorithm to
translate from operational specifications into declarative ones, with the aim of
obtaining better suited specifications, from the point of view of analysis. More
precisely, our aim is to obtain, from operational specifications such as that in
Fig. 2, declarative specifications closer to that in Fig. 3 (as opposed to that
in Fig. 4), that would allow us to perform certain automated analyses more
efficiently.

3 An Evolutionary Algorithm for Learning Declarative
Specifications

As we mentioned in previous sections, our objective is to compute a declarative
specification @ in relational logic, from an operational specification @,,, written
in a sequential programming language. To do so, we design a genetic algorithm,
that we describe below. Genetic algorithms [13] are non-exhaustive guided search
algorithms, based on a hill climbing strategy [24]. The search space is composed
of a generally very large set of individuals (the candidates), and the search
objective is to find an individual with sought-for features. As opposed to classic



pred repOK[thiz_0: List, header_0O: List ->one (Node + Null),
size_0: List ->one Int, next_0O: Node ->one (Node + Null),
result 0, result_1: boolean] {

nodesToVisit_1 = thiz _0.size_ 0 and

current 1 = thiz 0.header 0 and ((lt[thiz O.size 0, 0] and
result_1 = false and current_1 = current_4 and

nodesToVisit_1 = nodesToVisit 4 ) or (mot 1lt[thiz O.size 0,0]
and ((current_1 = current_4 and

nodesToVisit_ 1 = nodesToVisit_4 ) or

(gt [nodesToVisit_1, 0] and current_1 != Null and
nodesToVisit 2 = sub[nodesToVisit 1, 1] and

current_2 = current_1.next O and ((current_2 = current_4 and
nodesToVisit_2 = nodesToVisit_4 ) or (gtlnodesToVisit_2, 0]
and current_2 != Null and nodesToVisit_3 =
sub[nodesToVisit_2,1] and current_3 = current_2.next_0 and
((current_3 = current_4 and

nodesToVisit_3 = nodesToVisit_4 ) or (gtl[nodesToVisit_3, 0]
and current_3 != Null and nodesToVisit_4 =

sub [nodesToVisit_3, 1] and current_4 = current_3.next_0))))))
and not (gt[nodesToVisit_4, 0] and current_4 != Null ) and

((eq[nodesToVisit_4, 0] and current_4 = Null and
result_1 = true) or (mnot (eqlnodesToVisit_4, 0] and
current_4 = Null) and result_1 = false))))

+

Fig. 4. Declarative representation invariant for singly linked lists, obtained using a
semantics-preserving translation from repOK in Fig. 2.

search algorithms, genetic algorithms maintain a set of individuals, called the
population, and search progresses by iteratively selecting a number of individuals
in the population, using these for evolution (building new individuals out of
these), and leaving out some individuals of the whole set (the “old” ones and
the “new” ones). Selection of individuals for population evolution, as well as
individuals’ removal, are guided by a fitness function, the heuristic function
used to guide the search. This function applies to individuals, and its result
is generalizable to the population too (e.g., the fitness of the population may
be taken as the fitness of its “fittest” individual). This function captures the
features sought for in the search, and thus can be used as a halting criterion
(e.g., algorithm stops after finding an individual with fitness above a certain
threshold). Finally, individuals are often called chromosomes, and represented
as vectors of genes that capture their characteristics. This idea is strongly related
to how new individuals are constructed: by representing candidates as vectors of
independent characteristics, one can build new candidates by combining part of
the characteristics of an individual with part of the characteristics of another, or
by arbitrarily changing a characteristic of a given individual. These two forms of
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size header next

Fig. 5. Type graph for singly linked lists.

evolution are called crossover and mutation, respectively, and are the traditional
mechanism to build new candidates out of existing ones in genetic algorithms.
For further details, we refer the reader to [20].

3.1 Genes and Chromosomes to Represent Candidate Specifications

In order to capture candidate specifications, we start by taking the structure’s
signature, i.e., its type description, and building a type graph. A type graph for
a structure is automatically built from its fields and their types; nodes represent
types, while arcs capture fields. As an example, consider the type graph for
linked lists, as defined in Fig. 1, shown in Fig. 5.

Type graphs are used to form expressions, that will constitute the candidate
specifications. Expressions are built out of paths in the graph. To make expres-
sions finite, recursive fields are traversed at most once, and further “iteration”
is represented through closure operators. For instance, from the type graph in
Fig. 5, the following expressions are computed:

thiz

thiz.size

thiz.header
thiz.header.next
thiz.header.element
thiz.header.next.element
thiz.header.*next
thiz.header.*next.element

Moreover, in type graphs with multiple arcs connecting the same source and
target nodes, their “union” is also considered for building expressions. Thus, for
instance, for binary trees, there will be expressions of the form thiz.root.left,
thiz.root.right, as well as thiz.root. (left+right).

These expressions are complemented with constants, e.g., Null, O, none
(empty set), to build expressions (integer expressions are also generated by



applying the cardinality operator to non-singleton expressions). Also, the ex-
pressions cardinalities are taken into account (notice that the first 6 expressions
above denote singletons, whereas the last two denote sets of any cardinality).
Genes, the basic (independent) units that characterize chromosomes (in our
case, representing candidate specifications) can be:

— boolean constant true,

— an atomic formula built from the expressions originating in the type graph
(including considered constants), respecting relational logic’s grammar and
taking into account types and cardinalities (e.g., thiz.header '= Null,
thiz.header.*next = none, etc),

— a quantified formula, involving a (bound) variable x, and two expressions,
one for x’s scope, the other for “predicating” in relation to x (e.g., all
n: thiz.header.*next.element | n != 0, the two expressions here be-
ing thiz.header.*next.element and 0); the first of these expressions is
constrained to be a “set” expression, not a singleton.

Notice that, according to Alloy’s grammar, the second item above includes, for
every atomic formula «, its negation —«. This is due to the fact that “boolean”
operators in Alloy include their negated counterparts (e.g., = and !'=, in and
lin) [14].

Chromosomes are simply vectors of the previously described genes, and rep-
resent conjunctions of the corresponding genes. As opposed to what is common
in genetic algorithms, our chromosomes have varying lengths, and genes’ posi-
tions are disregarded (i.e., if a gene belongs to a chromosome, it is part of the
corresponding conjunction, independently of whether it is at the beginning of
the conjunction, or in any other position; this is of course due to the well known
associativity and commutativity properties of conjunction). Genes’ positions do
play a role in crossover; we use one-point crossover to build new chromosomes,
by randomly selecting points to “split” two chromosomes, and combining the
initial (resp., final) part of one of them with the final (resp., initial) part of the
other. If both chromosomes have size 1, then their crossover is the union of their
genes.

Our genetic algorithm has a very rich set of mutations. The simplest changes
a randomly picked gene to true (equivalent to removing the gene). The others
include changing an operator by another (e.g., = replaced by !'=), changing a
quantifier (e.g., all n: ... changed into some n: ...), adding or substract-
ing from an integer in an expression (e.g., changing #thiz.header.*next by
#thiz.header.*next+1 in an expression), and inserting/removing closure oper-
ators from expressions (e.g., changing thiz.header .next to thiz.header.*next
and vice versa).

3.2 Fitness of Candidate Specifications

Our fitness function applies to chromosomes representing candidate specifica-
tions, and is meant to assess how close are the corresponding candidates to the



desired specification. Of course, we do not have the desired specification (it is
what we are trying to build), so a direct comparison is impossible. However, we
do have the operational specification @,,, so we can (indirectly) compare candi-
date specifications against this one. In order to do so, we automatically generate
from @,, a set of positive and negative examples. These are instances that satisfy
and do not satisfy ®,,, respectively. These instances can be generated using any
test input generation mechanism that requires an operational specification, e.g.
[2,26]. We use an ad hoc variant of Korat, that generates inputs using a field-
exhaustive approach [23]. Intuitively, this generation skips structures that cover
the same values for fields than previously generated structures, and produces
more variability with fewer inputs (cf. [23]). The number of generated positive
and negative cases is limited to a provided bound k.

Fitness f(c) for a chromosome ¢ is computed as follows. First, we build
the specification @, corresponding to ¢ (conjunction of its genes), and evaluate
whether the positive and negative cases (recall that these are positive or negative
according to D,,) satisfy ®.. If any positive case fails with @, meaning that
there are cases that should be accepted but our specification rejects them, then
f(c) = 0. Instead, if the candidate has only negative cases (cases that should
not pass the specification but do so), fitness is defined as follows:

1
f(c) = (MAX — neg(c)) + (Ien(c) n 1)
where MAX is a constant larger than &, the total number of negative cases; neg(c)
is the number of negative cases that satisfy @.; and len(c) is the length of ¢, i.e.,
its number of non-trivial genes (genes that are not the constant true).

The rationale for this definition of the fitness function has to do with the
fact that we attempt to over approximate to the sought-for specification. This
motivates also how we capture candidate specifications. Thus, when a positive
case is not accepted by a candidate, we will simply consider it unfit. Fitness
for other candidates has two parts. First, the fewer the “counterexamples”, the
better; second, the smaller the specification, the better. This last part can be
thought of as a penalty related to formula length, that will make the genetic
algorithm tend towards producing smaller formulas. Of course, this is a secondary
issue, and this is why it contributes a fraction to the fitness value, as opposed to
the actual driving acceptance criterion, namely, the number of counterexamples
approaching to zero.

3.3 Overall Structure of the Genetic Algorithm for Learning
Specifications

The previously described elements are the constituting parts of our genetic al-
gorithm. These are put together following the general structure of a genetic
algorithm, namely: producing the initial population, and then iteratively select
individuals for evolution (crossover/mutation), produce the ampled population,
and discard some individuals to control population size, until a maximum num-
ber of evolutions is reached, or a suitable individual is produced. The initial



population is generated by producing size 1 chromosomes, covering combina-
tions of the previously described expressions. Both the initial population and
the succeeding ones are limited in size to 100 individuals.

The selection of chromosomes for crossover and mutation is based on a
“fittest-first” policy. We select the fittest 10% for crossover and mutation, and
randomly pick pairs from these for crossover; a small proportion of these, less
than 10% (i.e., about 1% of the size of the population), are selected for mutation.

Finally, the algorithm stops after 20 evolutions, or generations, have been
produced. Whenever a satisfying specification is generated (i.e., one that thas
no counterexamples), it is stored and the time measured, but the algorithm is
not stopped, in an attempt to produce shorter (i.e., more concise) specifications.

The rationale behind our selection of the above values for the genetic algo-
rithm’s parameters (population size, number of generations, percentage of indi-
viduals used for evolution, etc.) is not arbitrary. We learned adequate values for
these parameters from trial-and-error runs of our genetic algorithm, on a single
case study, namely singly linked lists. Trial-and-error is a common mechanism
used, in the context of evolutionary computation, to appropriately set parame-
ters of the evolutionary search. It is important to remark that, while we selected
these values based on experimentation, a single case study was involved in the
experiments leading to parameter selection, and the same selected values were
employed on all cases of our experimental validation.

4 Validation

In this section we perform an experimental assessment of our evolutionary ap-
proach to learning declarative specifications from operational ones. All experi-
ments were run on a workstation with Intel Core i7 2600, 3.40 Ghz, and 16 Gb of
RAM. The genetic algorithm has been implemented using JGAP [15], running
on Java OpenJDK 1.7, on an Ubuntu 16.04 LTS x86_64 operating system. The
first part of our evaluation analyzes how fast our algorithm is able to learn a
declarative specification from an operational one. We do so for data structure
invariants, on a number of data structure implementations with increasingly
complex invariants. These are implementations of

— singly linked lists;

— sorted singly linked lists;

— circular linked lists;

— binary trees;

— heaps;

(binary) directed acyclic graphs; and
— red-black trees.

All these structures and their corresponding operational invariants have been
taken from Korat’s set of accompanying examples, or are simple variants of these.
For each case study, we ran the algorithm 10 times, with a limit of 20 genera-
tions (evolutions of the genetic algorithm population). We report the minimum,



Table 1. Experimental Results corresponding to learning declarative invariants from
operational ones, using our evolutionary algorithm.

First Invariant Found Best Invariant Found
Data Min Max Avg Min Max Avg

Structure Gen| Sec.|Gen| Sec.|Gen|Sec.|Gen|Sec.|Gen| Sec.|Gen|Sec.
s. linked lists 0 1 2 8 1 4 0 1 2| 10 1 4
s. linked sort. lists 1| 10 4| 27 2| 15 2] 18 5| 35 3| 28
s. circular lists 0 1 1 7 0 5} 0 1 2| 11 0 )
binary trees 1| 10 4| 381 2| 18 1| 10 4| 31 2| 19
heaps 2| 27 7\ 73 4| 44 2| 27| 11| 105 5| 55
binary DAGs 0 2, 2| 15 1 7 0 2, 2| 15 1 7
red-black trees 4 56 8| 112 6| 85 4| 82| 12| 165 8119

maximum and average runs, indicating the number of generations that were nec-
essary, and the time in seconds required for learning the corresponding invariant.
We report the cost of computing the first invariant (the time and generations
required to get a suitable invariant), and the cost of computing the “best” in-
variant (the algorithm continues running after an invariant has been found, to
try to optimize it, e.g., making it more concise). These results are summarized
in Table 1.

The second part of the experiments compares our approach with a semantics
preserving translation from operational specifications into declarative ones, in
verification scenarios. More precisely, we verify, for increasingly larger scopes
(i.e., maximum sizes of the corresponding structures), that the insertion routine
of the corresponding structure preserves the structure’s representation invariant.
We use DynAlloy [8] for this task, using the original operational specification
translated into relational logic as described in [8, 9], and our learned declarative
specification. Running times are reported in minutes:seconds, in Table 2. Notice
that we used different scopes for different kinds of structures. In particular, linear
data structures admit larger scopes for analysis, compared to tree-like structures.

Finally, we analyze the precision of the obtained invariants. We compare our
learned invariants with automatically inferred ones using Daikon [7]. Daikon
computes likely invariants from run-time information, and thus requires tests to
exercise the program under analysis, and perform the inference. We fed Daikon
with randomly produced tests, computed using Randoop [21]. Daikon computes
invariants for all involved classes; when an invariant refers to an auxiliary class,
e.g., Node, we report the inferred invariant as being a property of all nodes of the
structure. Invariants inferred by Daikon are JML expressions. We show these as
relational logic expressions for easier comparison. The obtained invariants are
summarized in Table 3.

4.1 Assessment

Let us now evaluate our experimental results. First, consider the running times
for our genetic algorithm. For most structures and in most runs, we are able
to compute invariants in a few seconds. Our most complex data structure con-
sidered, red-black trees, takes in some cases a few minutes (about 2.5 minutes



Table 2. Comparison of operational invariants vs our computed declarative invariants,
verifying invariant preservation in bounded scenarios.

Data Structure Rel.Spec.[Op.Spec.[Rel.Spec.[Op.Spec.[Rel.Spec.[Op.Spec. [Rel.Spec.[Op.Spec.
Scopes 5 12 15 20

s. linked lists < 00:01] < 00:01 00:01 00:03 00:07 00:10 01:46 01:38

s. linked sorted lists| < 00:01| < 00:01 00:30 01:54 03:25 10:16 21:51 TO

s. circular lists < 00:01| < 00:01 00:02 00:04 00:10 00:22 01:37 02:18
Scopes 5 7 8 9

binary trees < 00:01 00:01 00:01 01:05 00:10 28:06 01:25 TO

heaps 00:01 00:03 00:48 02:45 01:54 49:52 06:54 TO

binary DAGs < 00:01 00:03 00:01 00:54 00:06 07:14 00:43 50:15

red-black trees < 00:01 00:01 00:01 01:40 00:13 36:22 01:16 TO

in the worst case) to compute an invariant. In general, our algorithm runs very
efficiently.

Regarding the efficiency of our computed invariants as opposed to the oper-
ational ones for bounded verification, declarative invariants show a substantial
profit in analysis, with the sole exception of our simplest case study, singly linked
lists. In this case study, and for our largest considered scope, the operational in-
variant is actually better than the declarative one, in verification time (although
very slightly). In all other cases, verification with the declarative invariant out-
performs verification with the operational one. Notice that learning pays off
exceedingly, comparing the time taken in learning and the speed up achieved
when replacing the operational invariant with the declarative one.

Of course, neither of the first two parts of our analysis is meaningful if our
invariants are imprecise. Our third part of the analysis confirms that our learned
invariants are rather precise, compared to the expected outcome. Indeed, in all
cases except red-black trees, we learn an invariant that is actually equivalent
to the repOK. In order to check equivalence, besides manually inspecting the
obtained invariants, we bounded-exhaustively enumerated instances satisfying
repOK using Korat, for various selected bounds, and compared the number of
obtained instances with the number of bounded instances satisfying our obtained
Alloy specification, for the corresponding bounds. In the case of red-black trees,
we are able to learn most of the expected invariant, except for the “black height”
portion of it. This part of the invariant states that “the number of black nodes in
all paths from the root to a leaf is the same”. Such constraint is not expressible
with the expressions that our genetic algorithm considers, and thus constitutes
a limitation of our approach. In relation to the alternative mechanism to learn
invariants that we considered for comparison, namely the Daikon approach, our
approach computes more precise specifications. Indeed, as our third table shows,
Daikon is able to compute weaker invariants (sometimes erroneous ones, resulting
from properties that consistently hold for the tests used for inference, but are
not true in the general case), compared to our computed specifications.



Table 3. Comparison of our learned invariants with automatically inferred ones using
Daikon.

Our approach ‘ Daikon

s. linked lists

(all n: thiz.header.*next | not (n in n.” next)) and thiz.header !'= Null and
eq[#(thiz.header.*next - Null), thiz.size] thiz.size >= 0

s. linked sort. lists
(all n: thiz.header.*next | not (n in n. next)) thiz.header!=Null and
eq[#(thiz.header.*next - Null),thiz.size] (all gtelthiz.size,0] and
n: thiz.header.*next-Null | (n.next != Null) => eq[thiz.header.element,0]

1lte[n.element,n.next.element])

s. circular lists

(all n: thiz.header.*next | (n in n. next)) and thiz.header=Null and
eq[#(thiz.header.*next), thiz.size] gtel[thiz.size,0]

binary trees
(all n : thiz.root.*(left + right) | (n .left.*(left thiz.root” (left+right)>=0 and
+ right)) & (n.right.*(left + right)) in Null) and gtel[thiz.size, 0] and (all
(eq[thiz.size,#(thiz.root.*(left + right) - Null)]) and (all |n:Node | #(n." (left+right))
n : thiz.root.*(left + right) | n !'in n . (left+right)) >= 0) and (all n:Node

#(n.left.” (left+right))

>= 0) and (all n:Node |
#(n.right.” (left+right))

>= 0) and (all n:Node |
#(n.left.” (left+right))

<= #(n."” (left+right)))

and (all n:Node |
#(n.right.” (left+right)) <=
#(n.” (left+right)))

heaps
(all n: thiz.root.*(left+right)| n !in n." (left+right)) thiz.root” (left+right)>=0 and
and eq[thiz.size, #(thiz.root.*(left + right) - gtelthiz.size, 0] and (all
Null)] and (all n : thiz.root.x(left+right) | n:Node | #(n.” (left+right))
n.left.x(left+right) & n.right.*(left+right) in Null) >= 0) and (all n:Node |
and (all n:thiz.root.*(left+right) | ((n.left!=Null) => #(n.left.” (left+right))
gte[n.element,n.left.element]) and ((n.right!=Null) => >= 0) and (all n:Node
gte[n.element,n.right.element])) #(n.right.” (left+right))

>= 0) and (all n:Node
#(n.left.” (left+right))

<= #(n.” (left+right)))

and (all n:Node |
#(n.right.” (left+right)) <=
#(n.” (left+right)))

binary DAGs

(all n: thiz.root.*(left+right)-Nulll n !'in (n. next)) and
eqlthiz.size,#(thiz.root.*(left+right)-Null)]

red-black trees

all n: thiz.root.*(left+right)| n !in n.” (left+right)) (thiz.root.color = Black) and
and eq[thiz.size,#(thiz.root.*(left+right)-Null)] and (thiz.size >= 0)
(thiz.root.color != Red) and (all n : thiz.root.*(left+right)
| n.left.*(left+right) & n.right.*(left + right) in Null)
and (all n : thiz.root.*(left+right)-Null | n.color=Red =>
((n.left.color!=Red) and (n.right.color!=Red)))

5 Related Work

Translating between formal languages has a long tradition both in Logic and
in Computer Science. There exist translations and mappings between logical
systems that have been used for automated analysis purposes, as well as for



complexity and decidability arguments (see, e.g., [4]). This kind of approach has
been borrowed by formal methods, in particular heavyweight ones, whose asso-
ciated analysis mechanism is in general deductive verification, with the aim of
using a proof system for a given formalism to reason about specifications in a
different one (see, e.g., [1]). In general, the emphasis has been in sound, many
times partial, syntactic mechanisms to define semantics-preserving translations,
that enable conservative analyses of the source specifications in the target for-
malism. With the advent of lightweight formal methods, the conservativeness
requirement can sometimes be dropped, as is the case e.g., with the (incom-
plete) SAT-based checking of Alloy specifications [14]. In these works the use of
imprecise search based techniques such as the one presented in this paper is not
observed, as far as we are aware of. However, learning techniques associated with
formal specification has been applied in the past. Some examples are the use of
the L* algorithm to assist assume-guarantee reasoning [22] and the inference of
loop invariants through a combination of mutation (as in genetic programming)
and static checking [11]. The first attempts to learn specifications of a routine
from calls it receives from the environment, while the second applies specifically
to loop invariants, thus differing from our presented work. Model synthesis is
also an active line of research related to our work. In the general case, synthesis
techniques assume a specification, and work on synthesizing operational models
that satisfy it (cf. [25,6,16,5]), thus working on a different direction compared
to our presented work.

6 Conclusions and Future Work

The increasing availability of automated technologies based on formal methods is
evidencing a lack of formal specifications accompanying software systems, while
at the same time contributes to showing their necessity. Indeed, many tools for
program analysis, including run time assertion checkers, and static analysis tools
for verification, fault localization, test generation and bug finding, require for-
mal specifications. In this paper, we argued about the fact that, even in cases
in which one has a formal specification available, many times this specification
is unsuitable for the kind of analysis, tool or technique, one is interested in. We
studied this situation in the particular case in which an operational specifica-
tion, represented as code, is available, but one requires such specification to be
provided in a logical setting. We proposed an evolutionary algorithm that pro-
duces such declarative specifications from operational ones, and showed that,
for a benchmark composed of data structures of varying complexities, the algo-
rithm is able to learn adequate declarative representation invariants, from their
operational counterparts. Moreover, we showed that these learned invariants are
better suited for analysis, in particular bounded verification, than perfoming an
existing semantics preserving translation of the operational ones and using those
for the same analysis. We also showed that our algorithm produces, for the an-
alyzed case studies, specifications that are significantly more precise than those
generated by related specification inference tools.



The presented work opens several lines for future work. As we explained
in the paper, we have concentrated on properties of linked structures, and the
whole design of our algorithm and the expressions it supports makes it infeasible
to learn some relevant properties (the color invariant for red-black trees is an
example of this situation illustrated in the paper). An obvious line of research
is work on a generalization of our approach, to enable learning a richer set of
specifications. Our case studies are so far limited to data structure representa-
tion invariants, so analyzing our approach on other kinds of programs, is also
part of our plans. In particular, in attempting to learn specifications from larger
programs we will come into scalability issues, that will need to be tackled. Fi-
nally, our operational-to-declarative approach enables interconnecting analysis
techniques and tools, some of which we have mentioned in the paper. We plan
to take advantage of our evolutionary algorithm to implement such tool cross
usages.
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