
A Genetic Algorithm for Goal-Conflict Identification
Renzo Degiovanni

Universidad Nacional de Río Cuarto
Argentina

rdegiovanni@dc.exa.unrc.edu.ar

Facundo Molina
Universidad Nacional de Río Cuarto

and CONICET, Argentina
fmolina@dc.exa.unrc.edu.ar

Germán Regis
Universidad Nacional de Río Cuarto

Argentina
gregis@dc.exa.unrc.edu.ar

Nazareno Aguirre
Universidad Nacional de Río Cuarto

and CONICET, Argentina
naguirre@dc.exa.unrc.edu.ar

ABSTRACT
Goal-conflict analysis has been widely used as an abstraction for
risk analysis in goal-oriented requirements engineering approaches.
In this context, where the expected behaviour of the system-to-be
is captured in terms of domain properties and goals, identifying
combinations of circumstances that may make the goals diverge,
i.e., not to be satisfied as a whole, is of most importance.

Various approaches have been proposed in order to automatically
identify boundary conditions, i.e., formulas capturing goal-divergent
situations, but they either apply only to some specific goal expres-
sions, or are affected by scalability issues that make them applicable
only to relatively small specifications. In this paper, we present a
novel approach to automatically identify boundary conditions, us-
ing evolutionary computation. More precisely, we develop a genetic
algorithm that, given the LTL formulation of the domain properties
and the goals, it searches for formulas that capture divergences in
the specification. We exploit a modern LTL satisfiability checker
to successfully guide our genetic algorithm to the solutions. We
assess our technique on a set of case studies, and show that our
genetic algorithm is able to find boundary conditions that cannot
be generated by related approaches, and is able to efficiently scale
to LTL specifications that other approaches are unable to deal with.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Risk management; Search-based software engineering; • Theory of
computation → Modal and temporal logics;

KEYWORDS
Goal Conflicts, Genetic Algorithms, LTL Satisfiability

ACM Reference Format:
Renzo Degiovanni, Facundo Molina, Germán Regis, and Nazareno Aguirre.
2018. A Genetic Algorithm for Goal-Conflict Identification. In Proceedings
of the 2018 33rd ACM/IEEE International Conference on Automated Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238220

Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3238147.3238220

1 INTRODUCTION
The requirements process is a key stage in many software develop-
ment processes, whose main concerns are the correct understand-
ing of the problem to be solved by the system-to-be (as well as
the corresponding problem domain), and its detailed specification
[20, 27, 52]. In general, understanding the objectives of a system to
be developed is not straightforward, and demands comprehensive
elicitation activities, to arrive to an explicit requirements specifica-
tion. And arriving to a requirements specification is an important
milestone in the requirements process, that enables a number of
further analysis tasks that can be performed on the specification,
to understand the interactions between different system goals, po-
tential contradictions and obstacles to requirements fulfilment, etc.
[52].

When requirements are expressed using some formal language,
specifications can often be subject to certain automated analyses,
to find flaws and imprecisions. For instance, checking for require-
ments satisfiability corresponds to ascertaining the absence of con-
tradictions in requirements. But such an analysis is only able to
find the simplest kinds of problems in requirements satisfaction;
many times requirements are indeed satisfiable as a whole, but
admit situations where goals diverge, i.e., where the satisfaction of
some system goals inhibits the satisfaction of others. Identifying
these circumstances early in the development process is of most
importance, since it enables one to improve specifications, take
countermeasures to these situations, and more deeply understand
the roots for potential system goal unsatisfiability.

Various approaches have been proposed in order to automatically
identify goal-divergent situations in the context of goal-oriented
requirements engineering. These divergences, known as bound-
ary conditions, have some particularities, that make them difficult
to detect. Firstly, they capture goal divergences through formu-
las, not simple specification states, that are consistent with the
domain properties, but imply the violation of the system goals.
Secondly, they characterise subtle goal violations, in the sense that
they cannot be simple negations of goals, and they only lead to
the unfulfilment of the goals when these are jointly considered,
i.e., if a single goal is removed, the whole situation becomes satis-
fiable. Existing techniques to identify boundary conditions have
limitations. Some techniques follow a pattern-based mechanism

https://doi.org/10.1145/3238147.3238220
https://doi.org/10.1145/3238147.3238220

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

for boundary condition identification [53], and thus only apply to
some specific goal expressions, when these are specified in a certain
syntactic way. Other approaches are based on more sophisticated
logical mechanisms, that process certain semantic constructions
generated from goals and domain properties, in order to identify
boundary conditions [13]; these, on the other hand, are affected by
scalability limitations of the underlying logical mechanisms, that
make them applicable only to relatively small specifications.

In this paper, we present a novel approach to automatically iden-
tify boundary conditions, using evolutionary computation. This
approach outperforms related techniques through the development
of a genetic algorithm that, given the LTL formulation of the do-
main properties and the goals, searches for formulas that capture
divergences in the specification. This algorithm exploits a mod-
ern LTL satisfiability checker to successfully guide the genetic
search toward suitable solutions. Our evaluation, based on various
case studies taken from the literature, shows that this evolutionary
mechanism is able to find boundary conditions that cannot be gen-
erated by related approaches, and is able to efficiently scale to LTL
specifications that other approaches are unable to deal with.

The remainder of the paper is organised as follow. Section 2 in-
troduces preliminary concepts about Goal-Oriented Requirements,
Linear-Time Temporal Logic and Genetic Algorithms, necessary
in the paper. Section 3 presents an illustrating example, used to
motivate the approach. Section 4 describes the approach in detail. In
Section 5 we validate our technique, by applying it to various case
studies, as well as comparing the approach with related techniques
in terms of efficiency and effectiveness. Finally, we discuss related
work in Section 6, and draw some conclusions and describe lines
of further work in Section 7.

2 BACKGROUND
2.1 Goal-Oriented Requirements
Goal-Oriented Requirements Engineering (GORE) [52] drives the
requirements process in software development from the definition
of high-level goals, that state how the system to be developed
should behave. Goals are prescriptive statements that the system
must achieve through the collaboration of cooperating agents, that
might include humans, hardware devices and of course the software
system, within a given domain. This domain must also be explicitly
characterised, via descriptive statements about the problem world,
such as natural laws, collectively referred to as domain properties.
Within this context, a goal model consists of a decomposition of
goals via refinements, capturing how a goal can be fulfilled in
terms of simpler ones. Goal refinement terminates when every leaf
subgoal can be assigned to a single agent, that will be in charge of
guaranteeing its achievement (agents feature operations, through
which they must fulfil the goals).

Generally, the description of software requirements can be inad-
equate for various reasons. For instance, assuming an unrealistic
benevolent behaviour of the environment can make the goals too
ideal to be met. Also, some unanticipated cases can make a require-
ments specification incomplete. Even the goals themselves may be
inconsistent as a whole, i.e., they may not be jointly satisfiable.

In GORE methodologies, dealing with the above-cited kind of
problems, as early as possible, is of most importance. The conflict

analysis phase [52, 54] deals with these issues, through three main
stages: (1) the identification stage, which consists of identifying
conflicts between goals (i.e., conditions that, when present, make
the goals inconsistent); (2) the assessment stage, consisting of as-
sessing and prioritising the identified conflicts according to their
likelihood and severity; and (3), the resolution stage, where conflicts
are resolved by providing appropriate countermeasures and, con-
sequently, transforming the goal model, guided by the criticality
level obtained during assessment.

This paper focuses on the identification stage, with the provision
of an automated mechanism for goal conflict discovery. A conflict
essentially represents a condition whose occurrence results in the
loss of satisfaction of the goals, i.e., that makes the goals diverge
[53]. More formally, given a set G1, . . . ,Gn of goals and a set Dom
of domain properties, these are said to be divergent if and only if
there exists an expression BC , called a boundary condition, such
that the following conditions hold:

{Dom,BC,
∧

1≤i≤n
Gi } |= false, (logical inconsistency)

{Dom,BC,
∧
j,i

G j } ̸|= false, for each 1 ≤ i ≤ n (minimality)

BC , ¬(G1 ∧ . . . ∧Gn) (non-triviality)

Intuitively, a boundary condition captures a particular combination
of circumstances in which the goals cannot be satisfied as a whole.
The first condition establishes that, when BC holds, the conjunction
of goals G1, . . . ,Gn becomes inconsistent. The second condition
states that, if any of the goals is disregarded, then consistency is
recovered. The third condition prohibits a boundary condition to
be simply the negation of the goals. Also, due to the minimality
condition, it cannot be false (it has to be consistent with the do-
main Dom). Section 3 provides an illustrating example, that further
explains the intuition behind boundary conditions.

Typically, formal requirements engineering methodologies adopt
a logical formalism to precisely capture the desired system goals
and domain properties. For instance, the KAOS method [52] uses
Linear-Time Temporal Logic [38] for formally specifying software
requirements. Employing a formal language to specify software
requirements enables the use of (semi-)automated analysis mech-
anisms, to assess specifications. For instance, if LTL formulas are
used to specify requirements, one may use automated LTL satis-
fiability solvers to check for the feasibility of the corresponding
requirements. As we will describe in detail later on, we will exploit
efficient LTL satisfiability solvers to automatically check whether
generated candidate formulas satisfy or not the conditions to be
valid boundary conditions.

2.2 Linear-Time Temporal Logic
Linear-Time Temporal Logic (LTL) [38] is a logical formalism that
has been extensively employed to state properties of reactive sys-
tems, and more recently, for specifying software requirements [52].
LTL assumes that the structure of time is linear, i.e., each instant of
time is followed by a unique future instant. The syntax of LTL formu-
las is inductively defined using a set AP of propositional variables,
the standard logical connectives and temporal operators ⃝ andU ,
as follows: (i) b ∈ B is an LTL formula, where B = {true, false}; (ii)
every proposition p ∈ AP is an LTL formula, and (iii) if φ1 and φ2

A Genetic Algorithm for Goal-Conflict Identification ASE ’18, September 3–7, 2018, Montpellier, France

are LTL formulas, then so are¬φ1,φ1∨φ2,φ1∧φ2,⃝φ1 andφ1Uφ2.
We consider the usual definition for the operators 2 (always), 3
(eventually), R (release) andW (weak-until) in terms of⃝,U , and
logical connectives.

LTL formulas are interpreted over infinite traces of propositional
valuations. Let σ be an infinite trace. Formulas with no temporal
operators are evaluated in the first state of σ . On the other hand,
⃝φ is true in σ if and only if φ is true in σ [1..] (the trace obtained
by removing the first state from σ), and φ1Uφ2 is true in σ if and
only if there exists a position i such that φ2 holds in σ [i ..], and for
all 0 ≤ j < i , φ1 holds in σ [j ..].

The satisfiability problem for LTL consists of checking, given
an LTL formula φ, if there exists at least one trace σ that makes φ
hold, i.e., φ evaluates to true in σ . LTL satisfiability is a decidable
problem [46], and there exist various tools that implement LTL
satisfiability checking, so called LTL SAT solvers. As we explain
later on in the paper, such tools are central to our evolutionary
computation approach, since LTL SAT solving is employed as part
of the fitness computation in the search for boundary conditions.

We refer the reader to [37] for further details on linear-time
temporal logic.

2.3 Genetic Algorithms
Genetic algorithms [23] are heuristic search algorithms, inspired
in natural evolution. As opposed to more traditional search algo-
rithms, that maintain a single “current” candidate solution during
the search space traversal, a genetic algorithm operates on a popu-
lation of candidate solutions to a given problem. These candidates
are called individuals or chromosomes, and are often represented as
sequences of genes (characteristics) that capture their features. A
genetic algorithm starts with an initial population of individuals,
whose individuals are produced in some arbitrary way, e.g., ran-
domly, and explores the search space by iteratively evolving the
population, trying to generate a population containing an individual
that represents a solution to the problem. At each iteration of this
evolution process, members of the current population are selected
to make the population evolve, by producing further individuals
using two genetic operators: crossover, that produces new individu-
als by combining parts of existing ones, and mutation, that creates
new individuals by randomly producing changes on existing ones.
The selection of individuals to which the genetic operators will be
applied, as well as the selection of individuals to be discarded after
each iteration, are guided by a fitness function. A fitness function is
a heuristic function that measures how “fit” a particular individual
is, i.e., how close a given candidate is to being an actual solution
to the problem being solved. The evolution process is usually per-
formed a defined number of iterations (known as generations of the
population), or until some termination criterion is met.

As it will be described in later sections, we will employ genetic
algorithms to search for boundary conditions of goal-oriented re-
quirements specifications. Thus, individuals will in our case rep-
resent LTL formulas, the genetic operators will produce formulas
from other formulas, and the fitness function should attempt to
evaluate how “close” a formula is to being a boundary condition.

For further details on genetic algorithms, we refer the reader
to [40].

3 MOTIVATION
In this section, we will illustrate through a running example both
the problem we tackle in this paper, and the main ideas behind our
approach based on a genetic algorithm. The example we will use is
a simple rail road crossing system (RRCS) [6]. In this model, a train
may approach and enter a crossing; these events are captured by
two propositions, ta and tc , respectively. A car may also approach
and enter the crossing, and these events are captured by ca and cc ,
respectively. The crossing gate may be opened (дo) or closed (¬дo).
Whenever the train is approaching, the gate should be closed, and
it will be reopened after the train has left the crossing. On the other
hand, whenever a car approaches the crossing, it will be able to
cross only if the gate is open. Let us assume that from the analysis
of the above statements, the following goals and domain properties
have been elicited:
Domain property: TrainsDoNotStop
FormalDef: 2(⃝(tc) ↔ ta)

Domain property: CarsCrossWhenGateIsOpened
FormalDef: 2(⃝(cc) → ca ∧ дo)

Goal: Avoid[Collision]
FormalDef: 2¬(tc ∧ cc)
Goal: Maintain[ClosedGateWhenTrainApproaching]
FormalDef: 2(ta → ¬дo)
Notice that the specification is consistent, i.e., all goals can simulta-
neously be satisfied, for instance when no train and no car approach
the crossing. However, this specification can exhibit some conflicts,
in particular when the controller opens the gate at the same time
that the train is crossing (i.e., дo ∧ tc), enabling an approaching car
to cross as well, and consequently to collision with the train (i.e.,
cc ∧ tc). This conflicting situation can be characterised by a bound-
ary condition, in this case (дo∧tc)W (cc∧tc). Boundary conditions
generalise conflicting situations, by capturing similar contending
scenarios by formulas in the same language used to express goals
and domain properties. Both identifying conflicting situations and
devising corresponding boundary conditions are non-trivial tasks
(recall in particular the conditions that formulas must satisfy to
be boundary conditions). In this work, we propose using a genetic
algorithm to automatically discover boundary conditions from a
formal goal model, with goals and domain properties expressed in
LTL. The algorithm deals with a very large search space of LTL
formulas, built through a syntactic manipulation of the formal do-
main properties and goals. Let us provide some intuition on how
our approach works.

Intuitively, a chromosome in our genetic algorithm represents
an LTL formula φ, in such a way that each gene of the chromosome
characterises a sub-formula of φ. We consider as the initial popula-
tion of our genetic algorithm the set of all sub-formulas that can
be built from the domain properties and the goals, and their corre-
sponding negations. For instance, from the goal ClosedGateWhen-
TrainApproaching of our running example, the chromosomes that
characterise the following 5 sub-formulas are created:2(ta → ¬дo),
ta → ¬дo, ta, ¬дo and дo; as well as their corresponding negations:
¬2(ta → ¬дo), ¬(ta → ¬дo) and ¬ta (notice that, дo and ¬дo have
already been considered).

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

In order to obtain new individuals to make the population evolve,
some chromosomes are selected at each iteration, and some ge-
netic operators are applied to these. In particular, our genetic algo-
rithm implements the two most common genetic operators, namely,
crossover and mutation operators. Given two chromosomes c1 and
c2, the crossover operator will produce a new chromosome c3 using
parts of c1 and c2. For instance, if chromosomes c1 and c2 char-
acterise the LTL formulas дo and tc , respectively, our crossover
operator can produce a new chromosome by combining both for-
mulas using some binary operator, such that дo ∧ tc . On the other
hand, given a chromosome c1, the mutation operator will create a
new chromosome c2 by randomly changing some genes of c1. For in-
stance, if chromosome c1 characterises the LTL formula2¬(tc∧cc),
a particular mutation can be performed, that removes the 2 opera-
tor, obtaining the formula ¬(tc ∧ cc).

In a genetic algorithm, the population iteratively evolves guided
by a fitness function, whose aim is to evaluate individuals, giving
higher scores to “better” individuals, i.e., those closer to sought for
solutions. This has the aim of guiding the genetic algorithm to gen-
erating an individual that represents a solution to the problem being
solved. In our case, the fitness function performs a number of SAT
calls, to an LTL SAT solver, in order to check, given a chromosome,
whether it meets all the conditions to be a boundary condition for
the requirements specification or not. At the end of each iteration,
those chromosomes with best fitness are selected to move to the
next iteration.

Let us consider a specific example, to show how our genetic
operators may lead to boundary conditions. Consider the boundary
condition (дo ∧ tc)W (cc ∧ tc) for the specification of the rail-
road crossing system. The following trace of the genetic algorithm
exemplifies how this particular formula may be generated:

(1) Initialize the population with the set of all sub-formulas of
the specification, and their negations. In particular, proposi-
tions дo and tc will be characterised by some chromosomes
c1 and c2, respectively.

(2) Then, assume that our algorithm selects both chromosomes
c1 and c2 to apply the crossover operator, producing a new
chromosome c3; in this particular combination, the ∧ opera-
tor is employed, obtaining the LTL formula (дo ∧ tc).

(3) Now assume that chromosome c ′1 characterising the goal
2¬(tc∧cc) (it will certainly be in the initial population), is se-
lected for the application of a mutation, in particular one that
acts by removing the temporal operator 2; we then obtain a
new chromosome c ′2 that characterises formula ¬(tc ∧ cc).

(4) Now the algorithm selects chromosome c ′2 and applies a mu-
tation operator similar to the previously mentioned, but this
time it removes the ¬ logical operator, leading to chromo-
some c ′3, that characterises the formula (tc ∧ cc).

(5) Finally, the algorithm selects chromosomes c3 and c ′3 to apply
the crossover operator that combines them with the W
operator, obtaining a new chromosome c4 representing our
target boundary condition: (дo ∧ tc)W (cc ∧ tc).

Of course, the above “trace” is one very specific, of the many that
the genetic algorithm may involve. The same boundary condition
may be produced with other different paths, and more importantly,
many more paths will never produce the boundary condition. To

guide it to our desired formulas, the fitness function plays a very
important role (as well as the crossover and mutation operators in
the definition of the search space), as well as other parameters of the
algorithm, like the mutation and crossover rates, population size,
individual selection approach, number of generations to consider,
etc. The following section will provide further details on all these
aspects of our genetic algorithm for boundary condition discovery.

4 A GENETIC ALGORITHM FOR
IDENTIFYING BOUNDARY CONDITIONS

As we mentioned in previous sections, the objective of our genetic
algorithm is to find situations that capture divergences in the LTL
formulation of the requirements specification. In order to express
such situations in the same formalism, the search space of our
algorithm is composed of LTL formulas. The next sub-subsections
detail the representation of the candidate LTL formulas as sequences
of genes as well as the main components of the algorithm.

4.1 Chromosome Representation
To represent an LTL formula as a chromosome, i.e., a vector of
genes, we first translate the formula to its definitional conjunctive
normal form (dCNF) [47]. This gives us a simple and intuitive way
of splitting LTL formulas into sub-formulas, in order to generate
their corresponding chromosomes.

Given an LTL formula φ, where AP is the set of propositional
variables used in φ, let X = {x0,x1, . . .} be a set of fresh proposi-
tional variables, such that, AP ∩ X = ∅. Then, according to [47],
dCNFaux (φ) is a set of conjuncts, defined over AP ∪ X , such that
each conjunct represents of a sub-formulaψ of φ. dCNFaux (φ) is
defined inductively on the structure of the sub-formulaψ as follows:

ψ Conjunct in dCNFaux (φ)

b with b ∈ B xψ ↔ b

p with p ∈ AP xψ ↔ p

o1ψ ′ with o1 ∈ {¬,⃝,3,2} xψ ↔ o1xψ ′
ψ ′ o2 ψ ′′ with o2 ∈ {∨,∧,U ,R,W} xψ ↔ xψ ′ o2 xψ ′′

Thus, the definitional conjunctive normal form of φ can be defined
in the following way:

dCNF (φ) ≡ xφ ∧2
∧

c ∈dCN Faux (φ)
c

Given the dCNF representation of φ, we can directly build the
chromosome representing φ as follows:

[c1, c2, ..., ck] where each ci ∈ dCNFaux (φ)

Notice that, as opposed to what is common in genetic algorithms,
these chromosomes have varying lengths, since different LTL for-
mulas can have a different amount of conjuncts in their correspond-
ing dCNF representations.

4.2 Initial Population
Since the initial population is a sample of the search space, the
routine used for generating it plays an important role. Taking ad-
vantage of the formulas present in the domain properties as well as
the goals of the given specification, we define the set of formulas
S = Dom ∪G and calculate the set of sub-formulas SF (ψ), for each
ψ ∈ S , using the following recursive definition:

A Genetic Algorithm for Goal-Conflict Identification ASE ’18, September 3–7, 2018, Montpellier, France

ψ = b or p with b ∈ B,p ∈ AP : SF (ψ) = {ψ }
ψ = o1ψ ′ with o1 ∈ {¬,⃝,3,2} : SF (ψ) = {ψ } ∪ SF (ψ ′)
ψ = ψ ′o2ψ ′with o2 ∈ {∨,∧,U ,R,W}: SF (ψ) = {ψ } ∪ SF (ψ ′) ∪ SF (ψ ′′)

Having the set SF (S) of all sub-formulas of eachψ ∈ S , the initial
population of individuals is defined to be the following set IP :

IP = SF (S) ∪ {¬s |s ∈ SF (S)}

Basically, the initial population is the set of all the sub-formulas,
as well as their negations, that can be obtained from the domain
properties and the goals of the specification.

4.3 Fitness Function
Since each chromosome in the population represents an LTL for-
mula that is a candidate boundary condition for the current specifi-
cation, the purpose of our fitness function is to evaluate how close
is the formula to being an actual boundary condition. By using the
definition in Section 2.1, we can exactly determine when a formula
is a boundary condition or not. Given a chromosome c of length lc
representing the LTL formula φc , the fitness value for c is computed
by the following function f :

f (c) = li (φc) +
|G |∑
i=1

min(φc ,Gi) + nt (φc) +
1
lc

where the functions li ,min and nt are defined as follows:

li (φc) =

1 if {Dom,φc ,
∧

1≤i≤n
Gi } |= false

0 otherwise

min(φc ,Gi) =

1
|G |

if {Dom,φc ,
∧
j,i

G j } ̸|= false

0 otherwise

nt (φc) =

0.5 if φc , ¬(G1 ∧ . . . ∧Gn)

0 otherwise
Intuitively, the first three terms of the function f capture the proper-
ties that a formula must satisfy in order to be a boundary condition,
namely the logical inconsistency (li), the minimality (min) and the
non-triviality (nt). With the aim of improving the readability of the
produced boundary conditions, the last term of the function applies
a penalty related to the formula length, that makes the genetic
algorithm to tend to produce smaller formulas. Of course, this is
a secondary issue, and this is why it only contributes a fraction
to the fitness value, as opposed to the actual driving acceptance
criterion, namely, the closeness of the formula to the satisfaction
of the properties to be a valid boundary condition.

4.4 Genetic Operators
In order to explore the search space, our genetic algorithm imple-
ments a crossover operator and a mutation operator, both adapted to
our chosen chromosome representation.

Given two randomly selected chromosomes c1 and c2, represent-
ing the LTL formulas φ1 and φ2, respectively, our crossover operator
creates a new chromosome cn , whose corresponding LTL formula
φn is calculated by applying one of the following operations:

(1) φn = φ1o2φ2, where o2 ∈ {∨,∧,U ,R,W};
(2) φn = φ1[s2/s1], where s1 ∈ SF (φ1) and s2 ∈ SF (φ2).

Basically, case (1) corresponds to randomly taking a binary operator
o2 ∈ {∨,∧,U ,RW}, to create a new LTL formula φ1o2φ2, in terms
of formulas φ1 and φ2. On the other hand, case (2) corresponds to
randomly taking a sub-formula s1 of φ1 and a sub-formula s2 of
φ2, and creating a new formula φn , based on φ1, but replacing its
sub-formula s1 by s2 (i.e., φ1[s2/s1]). Once the new LTL formula φn
has been built, the new chromosome cn is created, as described in
Section 4.1.

In contrast to the crossover operator, that applies at the chro-
mosome level, the mutation operation applies to randomly selected
genes of a chromosome, i.e., it works at the gene level. Recall that
each gene of a chromosome characterises a formula φ, that is a
particular conjunct of the dCNF representation of φ. Then, genes
have the generic form xψ ↔ ψ . In order to apply a mutation and
maintain a valid dCNF representation, our mutation operation only
alters the formulaψ of the gene, obtaining a new formulaψ ′. Let
д be a gene representing the conjunct xψ ↔ ψ . Our mutation
operation is defined inductively on the shape ofψ , as follows:

• ifψ = b orψ = p, where b ∈ B and p ∈ AP , then:
(1) ψ ′ = b ′, where b ′ ∈ B
(2) ψ ′ = r , where r ∈ AP and r , p
(3) ψ ′ = ¬ψ
• ifψ = o1xψ1 , where o1 ∈ {¬,⃝,3,2}, then:
(1) ψ ′ = xψ1
(2) ψ ′ = o′1xψ1 where o

′
1 ∈ {¬,⃝,3,2} and o

′
1 , o1

(3) ψ ′ = ¬ψ
• ifψ = xψ1o2xψ2 , where o2 ∈ {∨,∧,U ,R,W}, then:
(1) ψ ′ = xψr where xψr ∈ {xψ1 ,xψ2 }

(2) ψ ′ = xψ1o
′
2xψ2 where o

′
2 ∈ {∨,∧,U ,R,W} and o

′
2 , o2

(3) ψ ′ = ¬ψ

It is important to note that, for each case of ψ , all the mutations
have the same probability to be chosen. In the case thatψ is equal
to a boolean value or a proposition, the possible mutations to be
applied consist of replacingψ by true, false, or by its negation, or
by a different proposition. In case thatψ is a unary formula, then
the possible mutations to be applied are the deletion of the unary
operator from the formula, the replacement of the unary operator
by a different one, or just the negation ofψ . Similarly, ifψ is a binary
formula, the possible mutations to be applied consist of removing
the binary operator, and in this case, one of the operands should
be chosen as the new ψ ′, or replacing the binary operator by a
different one, or just negatingψ .

Typically, how many crossovers are applied per generation, and
with which probability a gene is mutated, are parameters that one
is allowed to configure in a genetic algorithm, to improve effec-
tiveness and efficiency. Our genetic algorithm considers the %10 of
the population size to be the number of times that the crossover
operator is applied per generation. For instance, if the predefined
population size is 100, then our genetic algorithm will perform 10
crossovers per generation. On the other hand, given a chromosome
c , with lc being the number of genes of c , our genetic algorithm
considers 1/lc as the probability with which a gene will be mutated.
This means that, in the long term, one gene per chromosome will
be mutated.

Finally, after applying the fitness function on each chromosome
in the population, some of them should be selected to survive to

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

the next generation. Our algorithm uses a very simple selection
operator, based on sorting the individuals of the current population
by its fitness values in decreasing order, and selecting as many
individuals as the set maximum population size. We also experi-
mented with the use of other known selection algorithms, such
as the tournament selector, but in our case studies we always got
better results with the “best fitness” selector. In the following sec-
tion, we assess the performance of our algorithm in case studies
of varying complexities, as well as its effectiveness in relation to
other techniques.

4.5 Correctness and (In)completeness
Let us now discuss the correctness and (in)completeness of our
approach. Regarding correctness, our approach results to be correct,
i.e., if the genetic algorithm finds a formula that is solution of the
problem, then this is indeed a valid boundary condition. Notice that,
as it was explained in Section 4.3, the fitness function of the genetic
algorithm performs, for each candidate solution, a number of SAT
checks in order to determine if the candidate formula satisfies or
not all the properties to be a boundary condition. Then, by relying
on the correctness of the satisfiability solver for LTL used for this
task, Aalta [34] in our case, our genetic algorithm is correct.

Regarding completeness, since our genetic algorithm implements
a non-exhaustive search, our approach results to be incomplete, i.e.,
there may exist some boundary conditions that are not be vis-
ited/considered by our genetic algorithm. However, it is important
to remark that our genetic operators are complete, in the sense
that, given two formulas φ and ψ over the same set AP of propo-
sitions,ψ can be produced from φ by the application of crossover
and mutation, provided a sufficiently large chromosome size. Thus,
all formulas over the same vocabulary, that fit into the predefined
chromosome size, can theoretically be produced by our genetic
algorithm.

5 VALIDATION
In this section we evaluate our genetic algorithm with the aim of
answering the following research questions:
RQ1 How effective and efficient is our approach to identify boundary

conditions in requirement specifications?
RQ2 Is our approach able to identify boundary conditions that can-

not be derived by related techniques?

In order to answer RQ1, we consider various requirement speci-
fications taken from the literature and different benchmarks, that
feature both safety and liveness goals, and evaluate our genetic
algorithm for identifying boundary conditions. In Section 5.1 we
present the experimental evaluation on several case studies taken
from [5, 13, 53], previously used for assessing a related technique for
computing boundary conditions based on a tableaux satisfiability
checking algorithm. In addition, we take several case studies used
in the Reactive Synthesis Competition (SYNTCOMP) [2], publicly
available at [3], which are considerable larger specifications than
those taken from the literature that we mentioned before. These
larger specifications will be used for assessing the scalability of our
genetic algorithm.

To answer RQ2, in Section 5.2we briefly introduce two previously
developed techniques for identifying boundary conditions, namely,

a pattern-based approach [53] and a tableaux-based approach [13],
and compare the boundary conditions computed by our genetic
algorithm against those obtained by the previous techniques.

We analyse the obtained results in Sections 5.3 and 5.4, and
discuss the scalability and applicability of our genetic algorithm.
In particular, we argue about the different options that one can
configure to run the genetic algorithm and how they may affect
its efficiency and effectiveness. We also discuss some contexts in
which the computed boundary conditions can be used, in addition
to the most common one, during the identify-assess-control cycle
in the risk analysis of requirements specifications. In particular, we
study the possibility of using boundary conditions for explaining
the cause of unrealisable specifications, in the context of automated
synthesis.

To perform the experimental evaluation, we implemented our
genetic algorithm using the Java Genetic Algorithms Package Li-
brary (JGAP) [1], and integrating the LTL2Büchi library [21] to
parse LTL requirements specifications, and the LTL satisfiability
checker Aalta [34], to perform all the SAT checks required by the
fitness function. The tool, the specifications for all case studies, and
a description of how to reproduce the experiments can be found in
the replication package1. All the experiments were run on an Intel
Core i7 3.2Ghz, with 16Gb of RAM, running GNU/Linux (Ubuntu
16.04).

5.1 Case Studies
We evaluate our genetic algorithm on the following case studies:
the Rail Road Crossing System [6], the Mine Pump Controller [32],
an elevator controller [15], the ATM [51], the TCP network proto-
col, the London Ambulance Service (LAS) [19], the Telephone [18],
and the three patterns for deriving boundary conditions presented
in [53] (Achieve, Retraction1, and Retraction2). Moreover, we con-
sider the specification of a lift controller taken from [5], and some
specifications of the SYNTCOMP Repository [3], namely, three
variants of the arbiter synchronization protocol (simple, prioritized
and round-robin), the ARM’s Advanced Microcontroller Bus Archi-
tecture (AMBA), and a load balancer protocol for mutual exclusion.

Table 1 summarises the results of the experimental evaluation of
our genetic algorithm. First, we report the size of the specification,
i.e., the number of goals and domain properties, and the size of
the initial population (I.P.) generated from such a specification. For
each case study, we ran the algorithm 10 times, with a limit of
50 generations, i.e., 50 evolutions of the genetic algorithm popu-
lation. Notice that we distinguish between the number of runs in
which the genetic algorithm succeeded by identifying at least one
boundary condition, and the number of runs in which the algorithm
did not identify any boundary condition. For all of the successful
runs, we report the minimum, maximum and average number of
generations, and the corresponding time in seconds, required for
learning the boundary condition. In particular, we focus on the cost
of computing the first solution (the number of generations and time
– in seconds – required to get a suitable boundary condition), and
the cost of computing the “best” solution: notice that the algorithm
continues running for 50 iterations, trying to optimise the boundary
conditions collected so far, e.g., by making them more compact.

1https://dc.exa.unrc.edu.ar/staff/rdegiovanni/ASE2018.html

https://dc.exa.unrc.edu.ar/staff/rdegiovanni/ASE2018.html

A Genetic Algorithm for Goal-Conflict Identification ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Evaluation of our Genetic Algorithm for Identifying Boundary Conditions

BCs successfully found No BC found
Case Study First Solution Best Solution –

min max avg min max avg –
Spec. Name #Dom #Goals I.P. #Runs Gen time Gen time Gen time Gen time Gen time Gen time #Runs avg time

RRCS 2 2 40 8 7 2 11 4 9 2 9 2 50 20 36 17 2 28
MinePump 1 2 34 10 3 1 17 12 6 2 3 1 38 24 18 7 0 0

ATM 1 2 32 9 1 0 18 8 6 2 2 0 48 16 20 7 1 27
Elevator 1 1 22 10 1 0 1 0 1 0 1 0 1 0 1 0 0 0
TCP 0 2 24 9 5 1 39 9 13 3 14 4 50 18 30 10 1 3

Telephone 3 2 42 3 4 4 28 29 14 14 21 29 78 86 30 53 7 44
LAS 0 5 52 3 18 599 37 2355 26 1551 38 3431 47 18403 44 8491 7 4202

AchieveAvoidPattern 1 2 32 10 1 0 8 2 4 1 3 0 26 11 13 5 0 0
RetractionPattern1 0 2 18 10 4 1 38 14 12 4 5 1 50 29 25 17 0 0
RetractionPattern2 0 2 22 8 1 0 25 9 7 2 6 1 39 28 24 16 2 38
Round Robin Arbiter 6 3 94 9 11 32 45 71 22 83 26 32 46 275 38 152 1 170

Simple Arbiter 4 3 128 8 11 245 43 386 28 383 11 245 43 386 29 406 2 1007
Prioritized Arbiter 6 1 84 4 15 257 42 523 30 7428 31 512 50 33687 43 8770 6 1582
Load Balancer 3 8 102 3 15 185 44 9215 34 5253 44 6359 48 11262 46 6578 7 12595

AMBA 6 21 362 6 24 3162 43 16342 30 7100 26 3162 49 7128 33 7541 4 11216
LiftController 7 12 160 5 18 765 47 9690 34 2716 18 2126 47 9690 34 2853 5 22397

As our experiments show, our genetic algorithm can effectively
compute boundary conditions for all of the case studies we consid-
ered. In the case of small specifications, like the RRCC, Minepump,
etc., it can be very efficient, finding the first solution (i.e., a bound-
ary condition) in a few generations. Of course, as the specification
becomes more complex, the genetic algorithm needs more itera-
tions to build richer formulas that lead us to boundary conditions,
and consequently, it requires much more time. For instance, the
worst case we reported is for computing the best solution for the
Prioritized Arbiter protocol: our genetic algorithm required 33687
seconds, i.e., more than 9 hours. However, in average the perfor-
mance of the algorithm is acceptable, considering that it can handle
specifications with tens of formulas, that no other related technique
can analyse.

5.2 Comparison with Related Techniques
To answer RQ2, we now compare our approach with two related
techniques for computing goal conflicts. The first one is a formal
approach [53] that requires matching goals against a set of pre-
defined divergence patterns, for which boundary conditions are
provided. It provides three different patterns, namely, the Achieve-
Avoid pattern, and two versions of the Retraction pattern. The first
difference arises from the number of boundary conditions provided
by each technique. Table 2 summarises the number of boundary
conditions learnt by our genetic algorithm. While patterns are de-
signed to provide only one boundary condition per each divergence
pattern, notice that our approach identifies several boundary con-
ditions, that evidence multiple divergence situations that are not
contemplated by the patterns. However, it is important to mention
that in the case of the Achieve-Avoid and Retraction2 patterns, one
boundary condition computed by our approach is equivalent to that
provided by the patterns. On the other hand, despite the fact that
our approach computes a large number of boundary conditions for
the Retraction1 pattern, none of these is comparable (in terms of
implication, i.e., either implied by or implying) with that provided

by this pattern. This indicates that both techniques complement
each other. In fact, one should always apply the patterns when
possible, as these provide readable valid boundary conditions, and
search for further boundary conditions with other techniques.

The second technique that we consider in the comparison is an
automated approach to compute boundary conditions, introduced
in [13]. This technique performs a complex logical manipulation of
the specification, by using a tableaux-based satisfiability checking
algorithm, to identify boundary conditions. It applies to safety and
liveness goals, as long as they can be expressed as reachability or
response patterns [37]. Table 2 summarises the experimental results
of applying this tool to the case studies considered here. The most
notable difference is that the tableaux-based technique is not able
to analyse all the specifications that our genetic algorithm supports.
Basically, the generation of the tableau structure is very expensive,
which becomes more noticeable in specifications containing various
LTL formulas (in our case studies with larger sets of formulas, most
are liveness properties). In these cases, the tableaux-based technique
exceeded the timeout, set to 3 hours. The second difference resides
again in the number of boundary conditions identified by each
approach. While the tableaux-based technique can compute mul-
tiple boundary conditions, our genetic algorithm has consistently
provided a larger set of divergence situations, that might not have
been identified before. As it can be noticed in Table 2, some of the
boundary conditions identified by the tableaux-based technique are
implied (→) by some one computed by our genetic algorithm. Oth-
ers result to be equivalent to some boundary condition computed
by our approach. And others resulted to be incomparable, evidenc-
ing different kinds of divergences identified by the two approaches.
This, again, indicates that the tableaux-based technique can be used,
as far as it is able to scale, for complementing the boundary con-
ditions learnt with our approach. The last difference we highlight
here is that the tableaux-based approach only applies to safety and
liveness goals expressed with the reachability or response patterns,
and computes boundary conditions with the general shape 3φ. In

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

contrast, our genetic algorithm does not impose any restriction
on the LTL formulation of the domain properties and goals, and
it does not restrict the shape of the boundary conditions learnt to
any particular pattern.

5.3 Scalability and Sensitivity
Basically, a genetic algorithm is a search-based algorithm that is
guided to solutions by a fitness function. There aremany parameters
that may considerably affect the performance of a genetic algorithm:
the maximum number of iterations (generations), the size of the
population, themaximum size for the chromosomes (in our case that
chromosomes have varying lengths), the probability with which
certain genetic operator is applied (mutation and crossover rates),
etc. An incorrect setting of these parameters may not only affect the
performance of the algorithm, it may also affect its effectiveness.

In our algorithm, the maximum number of genes per chromo-
some is a parameter to which the algorithm is very sensitive. If we
select a relatively small size for the chromosomes, the algorithm
may be limited to finding boundary conditions that would other-
wise be discovered with larger chromosomes, or not discovered
at all, if not expressible with such small number of genes. So, this
parameter needs to be adapted depending on the specifications
involved on each case study. In the case of small specifications,
like the MinePump and ATM, 20 genes per chromosome proved
to be enough for identifying various boundary conditions. But in
the case of larger specifications, as the AMBA or the LiftController
case studies, the genetic algorithm required larger chromosomes
(e.g., 50 genes per chromosome) to characterise the complex LTL
properties involved in the kind of specifications used to express the
domain properties and goals.

In order to assess the sensitivity of the genetic algorithm to
other parameters, we studied how the effectiveness and efficiency
of the algorithm is affected by the progressive variation of these,
as it is customary in the context of genetic algorithms. We focused
on two parameters, namely, the size of the population maintained
per iteration, and the probability with which the genetic operators
are applied. On one hand, as it was expected, as the size of the
population is increased, we notice that the effectiveness of our
genetic algorithm is increased as well. Of course, the efficiency is
affected too, since the algorithm has more candidate solutions to
which apply the genetic operators and evaluate the fitness function.
On the other hand, we observed that the effectiveness and the
efficiency of the algorithm do not seem to be affected by the rate of
the crossover operator. It is not the same for the mutation operator;
as we vary the mutation rate, the effectiveness of the algorithm
is affected, but not its efficiency. For instance, in the Telephone
case study, with a mutation rate set in 10%, the algorithm was
able to find boundary conditions in 5 runs out of 10, i.e., it had
an effectiveness of 50%, a 20% more than that reported in Table 1.
Thus, despite the fact that our case studies show that our genetic
algorithm scales to specifications that cannot be handled by related
approaches, we believe that the performance of the algorithm can
still be significantly improved by appropriate parameter setting.
A more exhaustive experimental evaluation is required to try to
identify different classes of problems, and establish well suited
configurations of our genetic algorithm in these classes.

5.4 Applicability and Usability
Goal-conflict analysis is typically driven by the identify-assess-
control cycle, aimed at identifying, assessing and resolving conflicts
that may obstruct the satisfaction of the goals. In particular, the
assessment step is concerned with evaluating how likely the identi-
fied conflicts are, and how likely and severe are their consequences.
The identified conflicts whose likelihood deems them critical, have
to be resolved by providing appropriate countermeasures. Notice
that for some of the case studies, e.g., the LAS and the round robin
arbiter, our genetic algorithm identifies more than one hundred
boundary conditions in some runs. Situations like this may make
the assessment and control steps very expensive, and even imprac-
tical. In order to provide the engineer with an acceptable number
of conflicts to be analysed, once the genetic algorithm finished,
we perform a number of SAT checks, to attempt to reduce the set
of boundary conditions to a smaller set of “more general” ones.
Formally, if BC1 implies BC2, we say that BC2 is more general, or
weaker, than BC2. This implication can be checked by using the
LTL SAT solver: BC1∧¬BC2 is unsatisfiable when BC1 implies BC2.
Table 3 reports, for each case study, the number of more general
BCs. Notice that the number of BCs to be analysed by the engineer
can be considerably reduced.

Let us now argue about the usefulness of the computed bound-
ary conditions. Consider the MinePump example, the system that
controls a pump in a mine, whose main goal is to avoid a flooding
in the mine. The system can detect when the level of the water is
high (hw) and when there is methane in the environment (m), since
switching on the pump in the presence of methane may produce an
explosion. The proposition po is used to indicate that the pump is
on. Assume now that the we would like to synthesise a controller
that satisfies the following specification:

Domain: PumpEffect
InformalDef: If the pump is on, the level of water decreases in at
most two time units.
FormalDef: 2(2≤2 (po) → 3≤2 (¬hw))

Goal: NoExplosion
InformalDef: The pump should be off when methane is detected.
FormalDef: 2(m → ⃝(¬po))

Goal: NoFlooding
InformalDef: The pump should be on when the water level is
above the high threshold.
FormalDef: 2(hw → ⃝(po))

One of the boundary conditions identified by our approach is
BC1 : 3(m ∧ hw), which coincides with the one manually identi-
fied in [33], and automatically discovered by the tableaux-based
approach [13]. In order to get rid of this conflict, [33] proposes to
refine the goal NoFlooding, by weakening it, requiring to switch on
the pump when the level of water is high and no methane is present
in the environment. Thus, NoFlooding’: 2(hw ∧¬m→ ⃝(po)). De-
spite the fact that this refinement removes the boundary condition
BC1, our genetic algorithm still computes 43 additional bound-
ary conditions on the refined specification (3 of them are “more
general”), that would demand further attention and subsequent

A Genetic Algorithm for Goal-Conflict Identification ASE ’18, September 3–7, 2018, Montpellier, France

Table 2: Comparison between our Genetic Algorithm and the Tableaux-based technique

Genetic Approach - #BCs Tableaux Approach Relation
Case Study min time max time avg time #BCs time → ← ≡ .

RRCS 5 14 21 23 16 22 1 1 1 0 0 0
MinePump 5 4 53 18 18 9 2 9 0 0 1 1

ATM 4 9 20 17 10 10 4 0 0 0 0 4
Elevator 3 3 17 5 7 3 1 0 1 0 0 0
TCP 4 16 12 20 8 15 2 1 0 0 0 2

Telephone 9 40 48 86 24 66 1 5 0 0 0 1
LAS 46 3729 129 20370 84 9349 1 5 1 0 0 0

AchieveAvoidPattern 12 8 38 11 21 10 4 2 2 0 0 2
RetractionPattern1 18 30 39 42 27 39 1 0 1 0 0 0
RetractionPattern2 11 14 38 44 22 36 1 0 0 0 1 0
Round Robin Arbiter 4 41 103 226 37 174 TIMEOUT

Simple Arbiter 1 165 44 892 15 1704 TIMEOUT
Prioritized Arbiter 9 687 19 33751 13 8893 TIMEOUT
Load Balancer 2 6885 4 13410 3 7565 TIMEOUT

AMBA 1 38999 7 12286 2 13404 TIMEOUT
LiftController 1 9302 7 14963 3 15531 TIMEOUT

Table 3: Number of weakest boundary conditions

Case Study #BCs #weakest BCs
MinePump 53 9

ATM 20 5
Elevator 17 3
RRCS 21 3
TCP 12 4

Telephone 48 7
LAS 129 8

AchievePattern 38 9
RetractionPattern1 39 2
RetractionPattern2 38 1

Round Robin Arbiter Unreal 1 103 10
AMBA Unreal 1 7 6
LiftController 7 5

Simple Arbiter Unreal 1 44 6
Load Balancer Unreal 1 4 2

Prioritized Arbiter Unreal 1 19 4

refinements. On the other hand, the tableaux-based approach does
not identify any conflict in the refined specification.

In addition to the mentioned use of boundary conditions, other
application contexts may be explored, e.g., in synthesis settings.
The problem of synthesis consists of automatically producing, from
a given specification, an operational model, usually called the con-
troller, that by interacting with the environment in which it is
executed, it allows it to satisfy a corresponding specification. LTL
has been widely used as the specification language in the context
of automated synthesis [14, 31, 39]; both the environment and the
properties to be satisfied by the controller are captured in many
cases in terms of LTL assertions. Typically, a synthesis tool has two
possible outputs: that the specification is realisable, and a controller
is returned; or that the specification is unrealisable, meaning that
it is not possible to build a controller to guarantee the goals (i.e.,

the environment always has an strategy to violate them). Unfortu-
nately, when the specification is not realisable, synthesis tools in
general do not provide useful feedback to help the user understand
why his/her specification is unrealisable. Boundary conditions can
be used as declarative sentences useful for diagnosing unrealisable
specifications.

For instance, if we consider our previous specification for the
Mine PumpController, andwe ask some synthesis tool, like Ratsy [7],
if it is possible to build a controller that satisfies the specified goals,
we will get as an answer that the specification is unrealisable. Recall
that two boundary conditions computed for this specification were
BC1 : 3(m∧hw) and BC2 : 3(hw∧¬m∧po∧⃝(¬hw∧¬po∨hw∧
(m∨¬po))). These formulas give us information of some admissible
behaviours of the system, that lead us to violating the goals. So,
if the controller is able to avoid reaching a boundary condition,
then such condition is not the reason of the unrealisability of the
specification. But, if the controller cannot avoid reaching the bound-
ary condition, then it means that the environment always have a
winning strategy to force the controller to reach the boundary con-
dition. In that case, such a BC could be thought of as an explanation
of why the controller cannot satisfy the goals, i.e., an explanation of
unrealisability of the specification. Returning to the example, if we
use Ratsy to check if it is possible to build a controller that avoids
boundary condition BC2 (i.e., we try to synthesize a controller for
the goal ¬BC2), then Ratsy will answer that such a goal is realisable.
However, if we try to synthesise a controller for goal ¬BC1, Ratsy
will answer that such a goal is unrealisable, meaning that it is not
possible for the controller to avoid reaching BC1. Thus, BC1 can
be used to explain why the controller cannot guarantee both goals
NoExplosion and NoFlooding at the same time.

This is a promising application of boundary conditions as ex-
planations of synthesis unrealisability, which needs to be further
investigated, and opens a line of future work.

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

6 RELATEDWORK
Inconsistency management has been the focus of many recent
works, most of them on the informal or semi-formal side [25, 26, 29,
30]. How to deal with inconsistencies in requirements specifications
has also been the focus of several studies on the formal side [16,
17, 24, 43]. From the point of view of qualitative analyses, some
works focus on identifying contradictory low-level requirements
and computing the degree to which goals are satisfied or denied
by them, e.g., [22, 42]. In general, these approaches incorporate
the notion of non-functional requirements, and study their relation
with the behavioural requirements.

The technique presented in [44] uses abduction for generating
explanations for strong inconsistencies, i.e., specifications that are
unsatisfiable. Our approach focuses on identifying divergences, that
are a weaker form of inconsistency. The technique in [24] searches
for inconsistencies between conditional scenarios that describe de-
sired behaviours of the system to be synthesised. Conflicts between
non-functional requirements have also been studied, for instance,
in [28, 35, 36]. For the resolution of conflicts, [41] makes use of
argumentation patterns to elicit, compose and relate stakehold-
ers beliefs. However, it assumes that conflicts have already been
elicited, in contrast to our approach that concentrates in identifying
goal conflicts. In [49] a methodology is proposed to guarantee that
specifications are consistent by construction, eliminating the need
for detecting inconsistencies.

As we mentioned in Section 5.4, the problem of detecting in-
consistencies in requirements specifications is related to that of
realisability of specifications [11, 45]. We believe that discovered
boundary conditions can be used for diagnosing unrealisable speci-
fications, providing useful information for the user to understand
the cause of the unrealisability. This opens a line of future work, as
a deeper exploration of this use of boundary conditions is required.
Moreover, it is also somewhat related to the problem of detecting
overconstrained specifications [48, 50], e.g., by extracting a core
set of assertions that cause an inconsistency in an Alloy model, or
by providing some test that identifies a missing behaviour in the
model. Our method however attempts to find an explanation (i.e., a
boundary condition) that would lead to such inconsistencies.

In the context of the goal-oriented requirements engineering
methodologies, obstacles [55] and conflicts [53] have been pre-
sented as an abstraction of risks in requirements specifications.
Recently, various works [4, 8–10, 55] have been proposed to assist
the engineers during the different phases of obstacle analysis. The
technique presented in [4] combines model checking and machine
learning to automatically generate a set of obstacle conditions with
respect to a set of goals and domain properties expressed in LTL.
However, obstacles are a particular kind of goal conflict; these are
conditions that only affect the satisfaction of one goal. Then, one
important limitation of these approaches is that they are ineffective
in situations that arise when multiple goals are conflicting.

Various works have also been proposed in order to assist engi-
neers in other phases of the identify-assess-control cycle of con-
flict analysis, the assessment phase in particular. Some of these
techniques, [12] in particular, apply to formal LTL specifications,
as in our case, and apply SAT-based mechanisms as well. How-
ever, therein the focus in the estimation of goal conflict likelihood,

contrary to the aim of the current paper, on boundary condition
discovery. Our comparison in Section 5.2 has been limited to tech-
niques specifically targeting goal conflict identification. As already
mentioned, [53] introduces the concept of goal conflict, and the
pattern-based technique for goal conflict identification. This tech-
nique imposes syntactical restrictions on the goal specifications,
that seriously limits its applicability; moreover, the patterns are
designed to provide only one boundary condition, in cases where
more than one boundary condition may exist. Section 5.2 shows
that our genetic algorithm is more general, in the sense that it does
not impose any restriction of the LTL requirements, and in contrast
to the patterns, is able to compute multiple boundary conditions.
Moreover, we showed that both approaches might be simultane-
ously used, when patterns apply, as some boundary conditions are
identified by one of the approaches, but not the other.

Another related work is that presented in [13], where boundary
conditions are automatically computed using a tableaux-based LTL
satisfiability procedure. It applies to safety and liveness goals, as
long as these can be captured as the progress and response patterns.
This approach is strongly tied to a complex logical algorithm to
generate the tableau for the specification (it is an essential part of the
approach), which may exhibit scaliability issues. Section 5.2 shows
that, for various specifications with larger number of goals and
domain properties, the tableau-based mechanism has performance
issues. This makes the technique applicable only to relatively small
specifications. On the other hand, the genetic algorithm presented in
this paper does not impose any restriction on the LTL formulation of
the domain properties and the goals, as shows a significantly better
performance than the tableaux-based approach; it incorporates a
modern LTL satisfiability checker, and is able to efficiently scale to
LTL specifications that other approaches are unable to deal with.

7 CONCLUSION AND FUTUREWORK
The identification of inconsistencies during the early phases of re-
quirements engineering is of most importance. It helps in avoiding
costly software repairs, and also supports systematic requirements
elicitation and verification activities. In this paper we presented a
novel approach for identifying goal conflicts in goal oriented LTL
requirements specifications, and is based on a genetic algorithm
that automatically discovers boundary conditions. The genetic algo-
rithm was designed in a way that allows it to consider arbitrary LTL
formulas as boundary condition candidates, and attempts to pro-
duce general and compact boundary conditions. Our experiments,
based on a large set of case studies, showed that our approach out-
performs related techniques, by producing boundary conditions
that previous approaches were unable to identify, and being capa-
ble of analysing specifications that are beyond the scope of other
techniques for boundary condition computation.

Our approach opens various lines for future work. We plan to
explore how different parameters affecting the technique’s effec-
tiveness can be appropriately set based on characteristics of the
analysed specification. We are also exploring the use of alternative
fitness functions, based on other logical mechanisms like model
counting, to guide the search. Finally, we are studying applications
of computed boundary conditions, in particular for unrealisability
diagnosis in the context of automated synthesis.

A Genetic Algorithm for Goal-Conflict Identification ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Java genetic algorithms package (jgap). http://jgap.sourceforge.net.
[2] The reactive synthesis competition. www.syntcomp.org.
[3] Synthesis competition repository. https://bitbucket.org/swenjacobs/syntcomp/.
[4] Dalal Alrajeh, Jeff Kramer, Axel van Lamsweerde, Alessandra Russo, and Se-

bastián Uchitel. Generating obstacle conditions for requirements completeness.
In 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 705–715, 2012.

[5] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. CoRR, abs/1308.4113, 2013.

[6] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan
Leue. Symbolic causality checking using bounded model checking. In Proc. of
the 22nd Intl. Sym. on Model Checking Software, pages 203–221, 2015.

[7] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert
Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. RATSY - A new
requirements analysis tool with synthesis. In CAV, volume 6174 of Lecture Notes
in Computer Science, pages 425–429. Springer, 2010.

[8] Antoine Cailliau and Axel van Lamsweerde. A probabilistic framework for goal-
oriented risk analysis. In 2012 20th IEEE International Requirements Engineering
Conference (RE), Chicago, IL, USA, September 24-28, 2012, pages 201–210, 2012.

[9] Antoine Cailliau and Axel van Lamsweerde. Integrating exception handling in
goal models. In IEEE 22nd International Requirements Engineering Conference, RE
2014, Karlskrona, Sweden, August 25-29, 2014, pages 43–52, 2014.

[10] Antoine Cailliau and Axel van Lamsweerde. Handling knowledge uncertainty in
risk-based requirements engineering. In 23rd IEEE International Requirements
Engineering Conference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015, pages
106–115, 2015.

[11] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic information
for realizability. In Proc. of the 9th Intl. Conf. on Verification, Model Checking, and
Abstract Interpretation, pages 52–67, 2008.

[12] Renzo Degiovanni, Pablo F. Castro, Marcelo Arroyo, Marcelo Ruiz, Nazareno
Aguirre, and Marcelo F. Frias. Goal-conflict likelihood assessment based on
model counting. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 1125–
1135, 2018.

[13] Renzo Degiovanni, Nicolás Ricci, Dalal Alrajeh, Pablo F. Castro, and Nazareno
Aguirre. Goal-conflict detection based on temporal satisfiability checking. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 507–518, 2016.

[14] Nicolás Roque D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel.
Synthesis of live behaviour models. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages
77–86, New York, NY, USA, 2010. ACM.

[15] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE, pages 411–420, 1999.

[16] Christian Ellen, Sven Sieverding, and Hardi Hungar. Detecting consistencies and
inconsistencies of pattern-based functional requirements. In Proc. of the 19th
Intl. Conf. on Formal Methods for Industrial Critical Systems, pages 155–169, 2014.

[17] Neil A. Ernst, Alexander Borgida, John Mylopoulos, and Ivan J. Jureta. Ag-
ile requirements evolution via paraconsistent reasoning. In Proc. of the 24th
Intl. Conf. on Advanced Information Systems Engineering, pages 382–397, 2012.

[18] Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict
detection. ACM TOSEM, 12(1):3–27, 2003.

[19] A. Finkelstein and J. Dowell. A comedy of errors: The london ambulance service
case study. In Proceedings of the 8th International Workshop on Software Spec-
ification and Design, IWSSD ’96, pages 2–, Washington, DC, USA, 1996. IEEE
Computer Society.

[20] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2002.

[21] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improv-
ing translation of LTL formulae to büchi automata. In Formal Techniques for
Networked and Distributed Systems - FORTE 2002, 22nd IFIP WG 6.1 International
Conference Houston, Texas, USA, November 11-14, 2002, Proceedings, pages 308–326,
2002.

[22] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented require-
ments analysis and reasoning in the troposmethodology. Engineering Applications
of Artificial Intelligence, 18(2):159 – 171, 2005.

[23] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[24] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating
statechart models from scenario-based requirements. In Formal Methods in
Software and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion
of His 60th Birthday, pages 309–324, 2005.

[25] J.H. Hausmann, R. Heckel, and G. Taentzer. Detection of conflicting functional
requirements in a use case-driven approach. In ICSE, pages 105–115, 2002.

[26] Sebastian J.I. Herzig and Christiaan J.J. Paredis. A conceptual basis for inconsis-
tency management in model-based systems engineering. Procedia CIRP, 21:52 –

57, 2014.
[27] Pankaj Jalote. An Integrated Approach to Software Engineering. Texts in Computer

Science. Springer, 2005.
[28] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos. Techne: Towards a new

generation of requirements modeling languages with goals, preferences, and
inconsistency handling. In Proc. of the 18th IEEE International Requirements
Engineering Conference, pages 115–124, 2010.

[29] M. Kamalrudin. Automated software tool support for checking the inconsistency
of requirements. In ASE, pages 693–697, 2009.

[30] Massila Kamalrudin, John Hosking, and John Grundy. Improving requirements
quality using essential use case interaction patterns. In ICSE, pages 531–540,
2011.

[31] Uri Klein, Nir Piterman, and Amir Pnueli. Effective synthesis of asynchronous
systems from GR(1) specifications. In Verification, Model Checking, and Abstract
Interpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA, USA,
January 22-24, 2012. Proceedings, pages 283–298, 2012.

[32] J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: an integrated approach
to distributed computer control systems. Computers and Digital Techniques, IEE
Proceedings E, 130(1):1+, 1983.

[33] Emmanuel Letier. Reasoning about agents in goal-oriented requirements engi-
neering, 2001.

[34] Jianwen Li, Shufang Zhu, Geguang Pu, and Moshe Y. Vardi. Sat-based explicit
LTL reasoning. CoRR, abs/1507.02519, 2015.

[35] C. L. Liu. Ontology-based conflict analysis method in non-functional require-
ments. In Proc. of the 9th IEEE/ACIS Intl. Conf. on Computer and Information
Science, pages 491–496, 2010.

[36] DewiMairiza andDidar Zowghi. Constructing a catalogue of conflicts among non-
functional requirements. In Proc. of the Intl. Conf. Evaluation of Novel Approaches
to Software Engineering, pages 31–44, 2011.

[37] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[38] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[39] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from
temporal logic specifications. In Dexter Kozen, editor, Logics of Programs, pages
253–281, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[40] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1996.

[41] P.K. Murukannaiah, A.K. Kalia, P.R. Telangy, and M.P. Singh. Resolving goal
conflicts via argumentation-based analysis of competing hypotheses. In Proc. 23rd
IEEE Int. Requirements Engineering Conf., pages 156–165, 2015.

[42] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Trans. Softw. Eng., 18(6):483–
497, June 1992.

[43] Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and John Grundy. KBRE:
a framework for knowledge-based requirements engineering. Software Quality
Journal, 22(1):87–119, 2013.

[44] Bashar Nuseibeh and Alessandra Russo. Using abduction to evolve inconsistent
requirements specification. Australasian Journal of Information Systems, 6(2),
1999.

[45] Suchismita Roy, Sayantan Das, Prasenjit Basu, Pallab Dasgupta, and P. P.
Chakrabarti. Sat based solutions for consistency problems in formal property
specifications for open systems. In CAD, pages 885–888, 2005.

[46] Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. STTT, 12(2):123–
137, 2010.

[47] Viktor Schuppan. Towards a notion of unsatisfiable and unrealizable cores for ltl.
Sci. Comput. Program., 77(7-8):908–939, July 2012.

[48] Ilya Shlyakhter, Robert Seater, Daniel Jackson, Manu Sridharan, and Mana
Taghdiri. Debugging overconstrained declarative models using unsatisfiable
cores. In ASE, pages 94–105, 2003.

[49] Monique Snoeck, Cindy Michiels, and Guido Dedene. Consistency by construc-
tion: The case of merode. In Proc. of the ER Workshop on Conceptual Modeling for
Novel Application Domains, pages 105–117, 2003.

[50] Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
Automated test generation and mutation testing for alloy. In 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017, pages 264–275, 2017.

[51] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral models
from scenarios. IEEE Trans. Software Eng., 29(2):99–115, 2003.

[52] Axel van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

[53] Axel van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing
conflicts in goal-driven requirements engineering. IEEE Trans. Software Eng.,
24(11):908–926, 1998.

[54] Axel van Lamsweerde and Emmanuel Letier. Integrating obstacles in goal-driven
requirements engineering. In Proceedings of the 20th International Conference on
Software Engineering, ICSE ’98, pages 53–62, Washington, DC, USA, 1998. IEEE
Computer Society.

 http://jgap.sourceforge.net
www.syntcomp.org
https://bitbucket.org/swenjacobs/syntcomp/

ASE ’18, September 3–7, 2018, Montpellier, France R. Degiovanni, F. Molina, G. Regis, and N. Aguirre

[55] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. IEEE Trans. Softw. Eng., 26(10):978–1005, October

2000.

	Abstract
	1 Introduction
	2 Background
	2.1 Goal-Oriented Requirements
	2.2 Linear-Time Temporal Logic
	2.3 Genetic Algorithms

	3 Motivation
	4 A Genetic Algorithm for Identifying Boundary Conditions
	4.1 Chromosome Representation
	4.2 Initial Population
	4.3 Fitness Function
	4.4 Genetic Operators
	4.5 Correctness and (In)completeness

	5 Validation
	5.1 Case Studies
	5.2 Comparison with Related Techniques
	5.3 Scalability and Sensitivity
	5.4 Applicability and Usability

	6 Related Work
	7 Conclusion And Future Work
	References

