
syntMaskFT: A Tool for Synthesizing Masking
Fault-Tolerant Programs from Deontic

Specifications

Ramiro Demasi1∗, Pablo F. Castro3,4†, Nicolás Ricci3,4†,
Thomas S.E. Maibaum2, and Nazareno Aguirre3,4†

1 Fondazione Bruno Kessler, Trento, Italy, demasi@fbk.eu
2 Department of Computing and Software, McMaster University, Hamilton, Ontario,

Canada, tom@maibaum.org
3 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,

Ŕıo Cuarto, Córdoba, Argentina, {pcastro,nricci,naguirre}@dc.exa.unrc.edu.ar
4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper we introduce syntMaskFT, a tool that synthe-
sizes fault-tolerant programs from specifications written in a fragment
of branching time logic with deontic operators, designed for specifying
fault-tolerant systems. The tool focuses on producing masking tolerant
programs, that is, programs that during a failure mask faults in such a
way that they cannot be observed by the environment. It is based on an
algorithm we have introduced in previous work, and shown to be sound
and complete. syntMaskFT takes a specification and automatically deter-
mines whether a masking fault-tolerant component is realizable; in such
a case, a description of the component is produced together with the
maximal set of faults that can be supported for this level of tolerance.
We present the ideas behind the tool by means of a simple example, and
also report the result of experiments realized with more complex case
studies.

Keywords: Fault-tolerance, Program synthesis, Temporal logics, Deon-
tic logics

1 Introduction

Critical systems, i.e., systems that are involved in serious or vital activities such
as medical procedures (e.g., software for medical devices) or the control of vehi-
cles (e.g., software controllers in the automotive and the avionics industries) are

∗ My contribution to this paper was made during my PhD studies at McMaster Univer-
sity, supported by a Fellowship from the IBM Canada Centre for Advanced Studies,
in support of the Automotive Partnership Canada funded project NECSIS.
† This work was partially supported by the Argentinian Agency for Scientific and

Technological Promotion (ANPCyT), through grants PICT PAE 2007 No. 2772,
PICT 2010 No. 1690 and PICT 2010 No. 2611; and by the MEALS project (EU FP7
programme, grant agreement No. 295261).

subject to a variety of potential failures. In many cases, these failures are not
the result of software defects; instead, these may be the result of environmen-
tal conditions, such as power outages, electronic noise, or the physical failure of
devices, that are not straightforward to avoid. The seriousness of the activities
in which critical systems are involved makes it necessary to mitigate the effect
of such failures. Therefore, the problem of guaranteeing through verification a
certain degree of fault-tolerance, ensuring that systems will not be corrupted
or degraded below a certain level despite the occurrence of faults, has gained
considerable attention in recent years. Moreover, given the complexity of these
systems and their properties, automated verification techniques for fault-tolerant
systems are becoming increasingly important. While verification is (usually) a
posteriori, a related automated alternative is synthesis. Various automated sys-
tem analysis techniques (e.g., SAT and automata based techniques) have been
recently adapted for system synthesis, i.e., the task of automatically obtaining a
correct-by-construction implementation from a system specification [1, 2].

Despite the growing research on system synthesis, the availability of tools for
fault-tolerant system synthesis is still low. In this paper we present syntMaskFT,
a tool for synthesizing masking fault-tolerant programs from deontic logic specifi-
cations. The theoretical foundations of the tool were put forward in [4, 5]. In this
paper, we concentrate on masking fault-tolerance which intuitively corresponds
to the case in which the system is able to completely mask faults, not allow-
ing these to have any observable consequences for the users. Roughly speaking,
our synthesis algorithm takes as input a component specification, and automati-
cally determines whether a component with masking fault-tolerance is realizable
or not. In case such a fault-tolerant component is feasible, its implementation,
together with the maximal set of faults supported for this level of tolerance,
are automatically computed. A distinguishing feature of the tool is the use of
Deontic Logic. These logics enrich standard (temporal) modalities with opera-
tors such as obligation and permission, making it possible to distinguish between
normal and abnormal system behavior. In our approach, the logical specification
of the component is given in dCTL-, a fragment of a branching time temporal
logic with deontic operators [3], especially designed for fault-tolerant component
specification. Let us emphasize that in our approach faults are declaratively em-
bedded in the logical specification, where these are understood as violations to
the obligations prescribing the behavior of the system. Thereby, we can inject
faults automatically from deontic formula violations. Regarding the engine of
our tool, it is based on a tableau-based method for deriving a finite state model
from a dCTL- specification, with simulation algorithms for calculating masking
fault-tolerance. Finally, we have conducted a series of experiments to test the
performance of syntMaskFT in practice.

2 dCTL

The logic dCTL is an extension of Computation Tree Logic (CTL), with its novel
part being the deontic operators O(ψ) (obligation) and P(ψ) (permission), which

are applied to a path formula ψ. Most importantly, the deontic operators allow
us to declaratively distinguish the normative (correct, without faults) part of
the system from its non-normative (faulty) part; an example of its use is shown
below. The tool deals with a fragment of dCTL (named dCTL-), described in the
following BNF style grammar:

Φ ::= > | pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

The standard boolean operators and the CTL quantifiers A and E have the usual
semantics. Deontic operators have the following meaning: O(ψ): the path formula
ψ is obliged in every future state, reachable via non-faulty transitions; P(ψ): there
exists a normal execution, i.e., not involving faults, starting from the current
state and along which the path formula ψ holds. These operators allow one to
capture the intended behavior of the system when no faults are present. We
present a simple example to illustrate the use of this logic to specify systems.
The semantics of the logic is given via colored Kripke structures. A colored Kripke
structure is a 5-tuple 〈S, I,R, L,N〉, where S is a finite set of states, I ⊆ S is
a set of initial states, R ⊆ S × S is a transition relation, L : S → ℘(AP) is a
labeling function indicating which propositions are true in each state, andN ⊆ S
is a set of normal, or “green” states. The complement of N is the set of “red”,
abnormal or faulty, states. Arcs leading to abnormal states can be thought of as
faulty transitions, or simply faults (see Fig.1).

Example 1. Consider a memory cell that stores a bit of information and supports
reading and writing operations. A state in this system maintains the current
value of the memory cell, writing allows one to change this value, and reading
returns the stored value. A property that one might associate with this model is
that the value read from the cell coincides with that of the last writing performed
in the system. Moreover, a potential fault occurs when a cell unexpectedly loses
its charge, and its stored value turns into another one. A typical technique to
deal with this situation is redundancy : use three memory bits instead of one.
Writing operations are performed simultaneously on the three bits. Reading, on
the other hand, returns the value that is repeated at least twice in the memory
bits; this is known as voting, and the value read is written back to the three bits.

We take the following approach to model this system: each state is described
by variables r and w, which record the value stored in the system (taking voting
into account) and the last writing operation performed, respectively. First, note
that variable w is only used to enable the verification of properties of the model,
thus this variable will not be present in any implementation of the memory.
The state also maintains the values of the three bits that constitute the system,
captured by boolean variables c0, c1 and c2. Part of the specification together
with the associated intuition, is shown below:

– O(r ↔ w), the value read from the cell ought to coincide with the last writing
performed.

– O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2)), a safety property of the system: the
three bits should coincide,

– AG(¬r ↔ ((¬c0 ∧ ¬c1) ∨ (¬c0 ∧ ¬c2) ∨ (¬c1 ∧ ¬c2))), the reading of a 0
corresponds to the value read in the majority.

We also note that we consider variables r, w as the interface of our memory cell,
that is, the observable information of this specification. In particular, note the
deontic formula given above; the first one states that we should read the same
value that was written, and the second one says that, when no faults are present,
the three bits of the cell coincide, otherwise a fault has occurred.

3 Masking Fault-Tolerance

Intuitively, a system is said to be masking fault-tolerant when the faulty behavior
is masked in such a way that it cannot be observed by the user. In [6], Gärtner
gives a more rigorous definition of masking fault-tolerance: a system is masking
tolerant when it continues satisfying its specification even under the occurrence
of faults. In [4], we propose to capture the notion of masking by means of sim-
ulation relations; here we introduce this idea by means of the memory example.
Consider the colored Kripke structure in Figure 1 (where red states and arrows

111/11

000/00

101/11

c0 ∧ c1 ∧ c2 ∧ r ∧ w →
c0, c1, c2, r, w := ¬c0,¬c1,¬c2,¬r,¬w

c0 ∧ c1 ∧ c2 ∧ r ∧ w → skip
¬c0 ∧ ¬c1 ∧ ¬c2 ∧ ¬r ∧ ¬w →

c0, c1, c2, r, w := ¬c0,¬c1,¬c2,¬r,¬w
¬c0 ∧ ¬c1 ∧ ¬c2 ∧ ¬r ∧ ¬w → skip
[c0 ∧ c1 ∧ c2 ∧ r ∧ w → c1 := ¬c1]
c0 ∧ ¬c1 ∧ c2 ∧ r ∧ w → c1 := ¬c1

Fig. 1. Colored Structure and Guarded Program for Memory Cell

are depicted using dotted lines), this structure is a model of the system described
in Example 1, where the circle labeled with 111/11 represents the state where
all the bits are on, and r and w are set to true, and similarly for the other states.
In this example a fault changing one bit is taken into account (the faulty state is
drawn using dotted lines). Note that this model can also be described by using
a simple guarded language; this is illustrated on the right in the same figure;
note that in this case the faulty action is enclosed within brackets. We said that
this structure is making fault-tolerant, since the faulty state is masked by the
nonfaulty ones. Indeed, taking into account the variables in the interface (r, w
in this case), one cannot observe any difference in comparison to the normal
behavior of the program (the fault is masked by the redundancy of bits).

Lexer

Parser

Front End

Tableau
construction

Pruning Rules

Preprocessing

Injection of
Faults

Masking
Simulation
Algorithms

Fault Analysis

dSpec Fault-Tolerant
Program

Fig. 2. The Architecture of syntMaskFT.

4 The Tool syntMaskFT

The main goal of syntMaskFT is, given a specification, to return the descrip-
tion of a system that masks a maximum number of faults. The description of
the system can be given in two ways: a colored Kripke structure, or a simple
description using a guarded command language in the style shown in the fig-
ure above. To this end, the tool uses a SAT method for dCTL- together with
a simulation relation to prune the state space. The architecture of syntMaskFT
is illustrated in Figure 2. The input of syntMaskFT is a deontic specification
dSpec, composed of an interface, an init-spec, and a normal-spec. interface is
described by a subset of the state variables, which, intuitively, form the visible
part of the system; init-spec and normal-spec are dCTL- formulas, where the for-
mer specifies the initial states of the system, and the latter specifies properties
that are required to hold in all states that are reachable from the initial states.
Initially, syntMaskFT reads a deontic specification dSpec as an input file, which
is then tokenized (Lexer) and parsed to obtain abstract syntax trees according
to the dCTL- expression grammar (Parser). The abstract syntax trees are stored
as elements of a set of dCTL- formulas. The preprocessing component constructs
an initial tableau TN for the input dSpec based on a dCTL- SAT procedure.
Pruning rules are applied to the the tableau TN in order to remove all nodes
that are either propositionally inconsistent, do not have enough successors, or
are labeled with a CTL or deontic eventuality formula which is not fulfilled. This
process returns as a result true, if dSpec is satisfiable, or false, in the case
dSpec is unsatisfiable. If dSpec is satisfiable, it has a finite model that is em-
bedded in the tableau TN . Assuming a positive result from the dCTL- decision
procedure for dSpec, the next step is to perform a fault analysis. In this phase,
faults are injected into the tableau in the first place, where faults are understood
as (all possible) violations to the deontic obligations imposed in the description
of the correct behavior of the system. Subsequently, a masking simulation algo-
rithm (taking into account the input interface) is executed in order to remove
those nodes from the tableau that cannot be masked. Finally, the tableau TF is
unravelled into a masking fault-tolerant program implementing dSpec.

Table 1. Experimental results.

Name Faults Injected faults unmasked/removed Time in sec

Byzantine Agreement 7 4 0.20
Token Ring 220 150 111.85

N-Modular-Redundancy 410 260 535.91
Memory Cell 100 70 10.13

5 Implementation and Evaluation

The syntMaskFT tool is implemented in Java. All experiments have been con-
ducted on a computer with a 2.9 Ghz Intel Core i5 with 4 GB of memory.

We have performed experiments to test the performance of our tool in prac-
tice. A well-known case study in the fault-tolerant community is the Byzantine
agreement problem, formalized in [7]. We have specified this example in dCTL-
and synthesized a solution for one general and three lieutenants. Another ex-
periment that we have performed is N-Modular-Redundancy (NMR), a form of
modular redundancy in which N systems perform a process whose results are
processed by a majority-voting system to produce a single output. An NMR
system can tolerate up to n module failures, where n = (N − 1)/2. For this
case study, we have evaluated 5-modular-redundancy using our tool. Our third
experiment involves an adaptation of a case study from [2], a token ring for solv-
ing distributed mutual exclusion, where processes 0 . . . N are organized in a ring
with the token being circulated along the ring in a fixed direction. We have syn-
thesized a token ring for four processes and an identical result to that reported in
[2]. Finally, our last experiment is the memory cell presented in Example 1. Table
1 summarizes the experimental results on these models, reporting the number of
faults injected and removed to achieve masking tolerance, and running times.

syntMaskFT is free software. Documentation and installation instructions can
be found at https://code.google.com/p/synt-mask-ft/.

References

1. P.C. Attie, A. Arora, and E. A. Emerson, Synthesis of fault-tolerant concurrent
programs, ACM Trans. Program. Lang. Syst. 26(1), 2004.

2. B. Bonakdarpour, S. Kulkarni and F. Abujarad, Symbolic synthesis of masking
fault-tolerant distributed programs, Distributed Computing 25(1), 2012.

3. P.F. Castro, C. Kilmurray, A. Acosta, and N. Aguirre, dCTL: A Branching Time
Temporal Logic for Fault-Tolerant System Verification, in Proc. of SEFM, 2011.

4. R. Demasi, P.F. Castro, T.S.E. Maibaum and N. Aguirre, Characterizing Fault-
Tolerant Systems by Means of Simulation Relations, in Proc. of IFM, 2013.

5. R. Demasi, P.F. Castro, T.S.E. Maibaum and N. Aguirre, Synthesizing Fault-
Tolerant Systems from Deontic Specifications, in Proc. of ATVA, 2013.

6. F. Gärtner, Fundamentals of Fault-Tolerant Distributed Computing in Asyn-
chronous Environments, ACM Comput. Surv. 31(1), 1999.

7. L. Lamport and S. Merz, Specifying and Verifying Fault-Tolerant Systems, in Proc.
of FTRTFT, 1994.

