
Hierarchical Temporal Specifications

of Dynamically Reconfigurable

Component Based Systems

Nazareno Aguirrea,b,1 Tom Maibaumb,1

a Departamento de Computación, FCEFQyN,
Universidad Nacional de Rı́o Cuarto, Enlace rutas 8 y 36 Km. 601,

Rı́o Cuarto (5800), Córdoba, Argentina

b Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, United Kingdom

Abstract

We study how temporal specifications of reconfigurable component based systems can be hierarchi-
cally organised. We do so by extending a previously introduced declarative prototypical language
to admit the definition of hierarchical subsystems. Each subsystem has an internal architecture,
composed of its internal interacting (simpler) subsystems, and basic components. The internal
architecture of a subsystem can change at “run time” by means of reconfiguration operations.
The notion of subsystem provides an extra coarse grained unit of modularisation, that complements
that of components. Since component interaction is achieved by means of coordination, a component
or subsystem can be represented by a logical theory isolated from the rest of the system. This, in
combination with the possibility of hierarchically organising a specification, has a special impact
in reasoning, since it allows us to further localise the proof efforts to the relevant subparts of a
specification.

Keywords: Software architectures, dynamic reconfiguration, temporal logic

1 Introduction

Software architectures can be regarded as a branch of software engineering
that puts emphasis on the high level structure of systems [9,7]. An archi-
tecture of a system is described in terms of components, which can interact

1 Authors’ email addresses: naguirre@dc.exa.unrc.edu.ar, tom@dcs.kcl.ac.uk.

Electronic Notes in Theoretical Computer Science 108 (2004) 69–81

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.013

http://www.elsevier.com/locate/entcs


via defined connectors. Connectors are the means for communication between
components, and have the particular property of being less cohesive than other
communication mechanisms, since they are external to the definitions of com-
ponents.

A topic that gained attention in the past few years is the possibility of
changing the architecture of a system at run time, a feature often called dy-
namic reconfiguration [13]. The need for dynamic reconfiguration appears nat-
urally and frequently, perhaps due to the wide acceptance of object oriented
modelling and programming [14], where dynamic reconfiguration is straight-
forwardly supported.

Several architecture description languages (ADLs) support dynamic re-
configuration, through the definition of reconfiguration operations. However,
those ADLs with support for reconfiguration and formal semantics generally
allow only for operational (as opposed to declarative) descriptions. With this
restriction in mind, we proposed a declarative formalism based on temporal
logic, for the description of reconfigurable software architectures [1]. The ab-
straction gained by using a declarative framework allows us to study possible
more sophisticated abstract ways of describing software architectures. The
main characteristics of this formalism are: (i) it has direct support for rea-
soning, due to its logical nature, (ii) it is expressive enough to allow for the
description of components in a property oriented way, and (iii) components
and configurations are uniformly represented by logical theories, which allows
us to build hierarchical organisations of systems [2].

Configurations of components are encapsulated into subsystems, which can
be dynamically reconfigured via subsystem operations. We have already justi-
fied the technical possibility of hierarchically organising reconfigurable systems
in terms of subsystems and components in [2]. However, the exact difficulties
and the advantages of doing so remained to be studied. This paper argues
about some important advantages of hierarchical organisations of component
based systems, by using the notion of subsystem, and proposes an extension
to a previously introduced prototypical specification language to cope with
hierarchical subsystems.

2 A Temporal Specification Language

In this section we describe a language over which the study of hierarchical
subsystems is based. The language is prototypical, and should not be regarded
as a real ADL. It is intended to be just a means to study more abstract
and declarative ways of describing software architectures, and to probe the
capabilities of our proposed formalism.

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8170



The language is a simple front end to a temporal logic. The main charac-
teristics of this logic are: (i) it is first-order, (ii) time is linear, discrete and
with an initial instant of time (i.e., the model of time is N), (iii) besides the
usual connectives and quantifiers, the logic also features the temporal opera-
tors © (“next”), � (“always in the future”), � (“eventually in the future”) and
U (“strong until”), (iv) some function and predicate symbols (called flexible)
are interpreted in a state dependent way, although there also exist functions
and predicates with state independent interpretations (called rigid).

This logic is a variant of the Manna-Pnueli logic [12], in which the flexible
symbols, i.e., those whose interpretation is state dependent, have been gener-
alised. Unfortunately, due to space restrictions, we are unable to discuss more
details regarding this logic. We refer the interested reader to [12] for details
on the original Manna-Pnueli logic, and to [2] for a detailed description of our
variant of the logic.

The logic, with a certain kind of language translation, constitutes a π-
institution [6,10]. This implies a useful structural property, that enables us
to promote properties from the lower layers of a system to their including
subsystems [2].

We summarise below the main constructs of the language and its proper-
ties. The style of specification is inspired by [5] and related work. Particularly,
we follow several ideas put forward with the CommUnity design language [15].

2.1 Describing Components

The lowest layer of the language is composed of a specification ADT of
datatypes. It is simply a theory presentation over an alphabet without flexible
symbols (equivalent to a first order logic characterisation of datatypes).

Let SADT be the set of sorts of the datatype specification ADT ; we can
define a component signature by providing: (i) a set of SADT -indexed read
variables, (ii) a set of SADT -indexed attributes, and (iii) a set of S∗

ADT -indexed
actions. The state of a component is determined by its attributes, which are
like variables of imperative programming languages. Read variables are simply
special attributes, out of the control of the component and used as “entry
points”, for implementing communication. Actions represent parameterised
instantaneous operations of the component.

The intended behaviour of components is described by temporal axioms,
employing: (i) datatypes specified in ADT , (ii) read variables and attributes
as flexible 0-ary function symbols, (iii) actions as flexible predicate symbols,
and (iv) a special 0-ary flexible predicate, which denotes the activeness of
the component. The combination of a signature for components together
with axioms to characterise the components is actually the description of a

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 71



component type, that we call class definition. Class definitions are given a
name, which is also used as the special 0-ary flexible predicate denoting the
component’s activeness.

Possible counterparts of class definitions in some ADLs are component
types in Darwin [11], component definitions in Acme [8] and in Wright (within
styles) [3], and programs in CommUnity [15].

Example 2.1 Let us provide an example of a class definition. Suppose we
want to specify a network of “units” that can interchange messages. Let us call
these units cells. Cells are associated an address, which is an integer number,
and is supposed to be unique to a cell. Messages include the address of the
destination cell.

We can model messages and addresses as basic datatypes. So, let us assume
that our datatype specification ADT contains, besides the specification of
the usual datatypes such as booleans, strings, integers, etc, the specification
of a special datatype message. There exists also a (static) function dest :
message → integer, which singles out the destination address embedded in a
message. There is a special “empty” message, denoted by the 0-ary function
symbol null :→ message. The destination address of null is undefined.

We can specify cell components by defining a class, as shown in Fig. 1.
Class Cell has two boolean read variables, in and out , which indicate a cell
whether there is an incoming message or if the “environment” is ready to
receive an outgoing message from the cell, respectively. It also has an integer
typed attribute, meant to hold the address of the cell, and two attributes
curr-in and curr-out of type message, which serve the purpose of storing a
just received message (ready to be “consumed”) and a message ready to be
sent, respectively.

The activeness of the component is represented, as we previously indicated,
by the flexible predicate named after the class name, i.e., predicate Cell . Intu-
itively, the truth of predicate Cell at an instant of time should be interpreted
as the component being active, or “live” during that instant. By contrast, if
predicate Cell is not true at an instant of time, then the component is not
active, or “dead”, at that instant.

Class Cell contains six (instantaneous) actions. Action c-init(integer) is
an initialisation operation, which sets the address attribute (see Axiom 1).
As expressed by Axiom 2, c-init can be called once per life time of a cell
component. The intuitive reading of Axiom 2 is: “in all states and for all
x ∈ integer, it is the case that, if the instance is active and c-init(x) occurs,
then it will not occur again in the current life time of the instance” 2 . Axiom

2 Axiom 2 employs a derived temporal operator, namely the W operator (“weak until”).

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8172



Class Cell
Read Variables in, out : boolean
Attributes address : integer; curr-in, curr-out : message
Actions c-init(integer), prod(message), send(message), get(message), cons(message),
rem()
Axioms
1. �[∀x ∈ integer : Cell ∧ c-init(x) → ©(address = x)]
2. �[∀x ∈ integer : Cell ∧ c-init(x) → ©(¬∃y ∈ integer : c-init(y)W¬Cell )]
3. �[Cell ∧ (address �= ©address) → ∃x ∈ integer : c-init(x)]
4. �[∀m ∈ message : Cell ∧ get(m) → ((in = T) ∧ (curr-in = null))]
5. �[∀m ∈ message : Cell ∧ get(m) → ©(curr-in = m)]
6. �[∀m ∈ message : Cell ∧ cons(m) →
((curr-in �= null) ∧ (curr-in = m) ∧ (dest(m) = address))]
7. �[∀m ∈ message : Cell ∧ cons(m) → ©(curr-in = null)]
8. �[Cell ∧ rem() → ((curr-in �= null) ∧ (dest(curr-in) �= address))]
9. �[Cell ∧ rem() → ©(curr-in = null)]
10. �[Cell ∧ (curr-in �= ©curr-in) → (∃m ∈ message : get(m) ∨ cons(m)) ∨ rem()]
11. �[∀m ∈ message : Cell ∧ send(m) → ((out = T) ∧ (curr-out = m))]
12. �[∀m ∈ message : Cell ∧ send(m) → ©(curr-out = null)]
13. �[∀m ∈ message : Cell ∧ prod(m) → (curr-out = null)]
14. �[∀m ∈ message : Cell ∧ prod(m) → ©(curr-out = m)]
15. �[Cell ∧ (curr-out �= ©curr-out) → ∃m ∈ message : send(m) ∨ prod(m)]
EndOfClass

Fig. 1. Class Cell : A Basic Class Definition

3 indicates that, while the component is active, attribute address can only be
modified by action c-init .

Action get obtains an incoming message from the environment. It has
as a precondition that in must be true (there is a message waiting to be
obtained) and curr-in must be null (no incoming messages are overwritten
before being consumed) (see Axiom 4). After get(m) occurs, curr-in becomes
m in the next state (see Axiom 5). Action cons consumes a previously obtained
message, provided that the incoming message is addressed to the component
(see Axioms 6-7). If a previously obtained message is not addressed to the
component, it can be removed using the rem() operation (see Axioms 8-9).
Actions prod and send are meant to produce and send messages, respectively.
They are characterised by Axioms 11-14.

From the previous example, the reader might get an idea of the way that
some temporal operators are used to specify the intention of actions. In par-
ticular, the example illustrates the use of the temporal operators � (always
in the future), to represent invariant properties of components (as used in
all axioms), and © (next) to specify postconditions of actions, as in Axioms
1,5,7.

The use of the predicate Cell (the flexible predicate named after the class
name) in the axioms might appear to be a bit unnatural at a first glance. It

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 73



is necessary to understand that axioms of components are absolute, in the
sense that they speak about all the possible states of a system in which the
component is engaged, including those in which the component is not live.
In addition, the availability of such predicates in the language of components
allows the specifier to enforce certain constraints. For instance, the constraint
“a component cannot be ‘unplugged’ while it is engaged in certain activity”,
can be specified within a component’s theory, precisely due to the fact that
this kind of predicate is available in the vocabulary of components.

A class specification C is interpreted as a temporal theory presentation.
The axioms of the presentation are obtained by putting together: (i) the
axioms explicitly provided as part of the class definition C, (ii) the axioms
given for the datatype specification ADT , and (iii) a special implicit “frame
axiom”, called locality axiom, and expressing that a component must change
its state only by means of its defined actions. The theorems of this theory,
obtained by means of a proof calculus presented in [2], represent the properties
of all “instances” of C.

The monotonicity of the logic and the inclusion of the axioms of ADT in
the theory of a class allow us to reason about datatype properties within ADT
and then “import” these properties in proofs of properties within a class C
[2]. For our Cell class, a sample theorem of the corresponding theory is the
following: “in all states and while the cell is active, it is the case that, actions
rem and cons cannot occur simultaneously”. This property, which can be
easily proved using the mentioned proof calculus, is represented in the logic
by the formula:

�[Cell → ¬(rem() ∧ (∃m ∈ message : cons(m)))].

2.2 Describing Interactions

We choose to define class definitions as closed independent units. That is, we
do not allow classes to refer to other classes within their definitions. This is an
important point, since from a logical point of view it allows us to reason about
component properties independently of the rest of the system. But, of course,
we need ways of making components interact. We achieve communication
between components by using the useful concept of coordination. In this
respect, our means for communication are very close to those of CommUnity
[15], although we allow for more flexibility. To make components interact we
define associations. Associations are composed of a set of participants and a
number of formulae, which characterise the interaction.

Consider the association definition of Fig. 2. This association defines a
way to make cells communicate. It has two cell typed participants, s and t

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8174



(source and target). The connections indicate that, if two cells are connected
via Link , then; (i) the in read variable of the first is true iff the curr-out
attribute of the second is not null , and vice versa, (ii) the out read variable of
the first is true iff the curr-in attribute of the second is null , and vice versa,
and (iii) the send action of the first “calls” the get action of the second, and
vice versa.

Association Link
Participants s , t : Cell
Connections
1. (s .in = T) ↔ (t .curr-out �= null)
2. (s .out = T) ↔ (t .curr-in = null)
3. (t .in = T) ↔ (s .curr-out �= null)
4. (t .out = T) ↔ (s .curr-in = null)
5. ∀m ∈ message : (s .send(m) → t .get(m))
6. ∀m ∈ message : (t .send(m) → s.get(m))
EndOfAssociation

Fig. 2. Association Link : A Simple Association.

Note that the formulae that define the connections of Link have the par-
ticipants as free variables. These formulae will be systematically transformed,
and will form part of a theory characterising dynamic configurations of com-
ponents.

3 A Notation for Subsystems

In the previous section, we showed how component and connector types can
be declaratively defined, by means of classes and associations, respectively.
We need now to compose these specifications in order to build architectures
of interacting components. We proposed to do so by defining what we called
subsystems [1]. A subsystem is a new unit of modularisation, which encapsu-
lates a dynamically reconfigurable set of interacting components. Classes are
templates of components whose internal structure is basic, composed simply of
their attributes; subsystems on the other hand, or more precisely, subsystem
instances, can have a complex internal structure, composed of their internal
live components and their interconnections. Moreover, subsystems admit the
definition of reconfiguration operations, which can dynamically change their
internal structure.

In a previous work, we defined subsystems as complex components whose
internal state is dynamic, and is built out of instances of classes (i.e., com-
ponents) related by means of instances of associations (i.e., connectors) [1].
We want now to extend that, to allow subsystems not only to be composed of
instances of classes, but also to subsume instances of simpler subsystems, thus

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 75



allowing for hierarchical organisations of systems. As a result, we would have
two types of component definitions: classes, which define simple unstructured
components (i.e., the base case of the process of defining aggregations), and
subsystems, which define complex components whose structure is built out of
instances of simpler components. This is feasible thanks to the fact that the
semantics of basic components and aggregations are defined in a similar way,
by means of temporal theories, and therefore there are no technical restrictions
for iterating the process of defining aggregations [2].

Let us then propose an extended notation for subsystems. Let ADT NAME

be a conservative extension of ADT with an extra sort NAME and a suffi-
ciently large set of constants of this sort. Constants of sort NAME are used to
represent identifiers of components of the lower layers. A subsystem signature
is composed of: (i) a name, (ii) finite sets of basic attributes and basic read
variables, typed by a sort of ADT NAME, (iii) a finite set of operations, whose
arguments are typed by sorts of ADT NAME.

Attributes are part of the internal state of a subsystem. Read variables
will serve the purpose of allowing a subsystem to communicate with others.
The operations allow a subsystem to evolve. Contrary to the use of operations
in basic components, operations in subsystems can modify the architectural
structure of the subsystem, by creating or deleting instances of components,
and creating or deleting connections between them. Therefore, we can consider
the operations of a subsystem as reconfiguration operations, that will change
the structural aspect of the subsystem at run time.

In order to logically characterise this, a subsystem Sub is equipped with a
finite set of axioms, which are formulae over the alphabet ASub , composed of:
(i) the extended datatype specification ADT NAME, (ii) the flexible function
and predicate symbols resulting from class definitions and other more basic
subsystems, adding to all of them an extra parameter of sort NAME, (iii) a
flexible predicate symbol R : NAME, . . . , NAME

︸ ︷︷ ︸

k times

for each association definition

R with k participants, and (iv) a flexible predicate symbol a : S1, . . . , Sk for
each subsystem action of type a(x1 : S1, . . . , xk : Sk).

We require the sets of symbols originating in class definitions to be disjoint,
in order to univocally determine the class a symbol belongs to. This is just to
make the presentation simpler.

Example 3.1 With Cell and Link already defined, we can think of a basic
subsystem, SubNet , to represent a dynamic aggregation of cells. More pre-
cisely, a subnet is a dynamic collection of cells, where there exists a special cell
called gateway. All other cells within a subnet are connected to the gateway,
in a “star” topology. New cells can be created, and existing ones deleted, via

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8176



corresponding operations. The subsystem of Fig. 3 is a possible specification
of subnets. Axioms 1-3 specify that, while the subsystem is active, or live,
the cells are arranged in a star topology, with gateway as the center. Ax-
ioms 4-5 express that gateway is a cell that does not change during the life
time of the subnet. Axiom 6 corresponds to the informal requirement that
an address must be unique to a cell 3 . Axioms 7-8 relate the initialisation
operation of the subsystem, namely s-init , to the creation and initialisation
of the gateway. Finally, Axioms 9-11 and 12-14 characterise the operations
add-cell and rem-cell , for the creation and deletion of cells within a subnet.

Subsystem SubNet
Attributes gateway : NAME
Actions s-init(integer), add-cell(NAME), rem-cell(NAME)
Axioms
1. �[∀n, m : SubNet ∧ Link(n, m) → (n = gateway)]
2. �[∀n : SubNet ∧ Cell(n) ∧ (n �= gateway) → Link(gateway , n)]
3. �[SubNet → ∀n : ¬Link(n, n)]
4. �[SubNet → Cell(gateway)]
5. �[∀n : SubNet ∧ (gateway = n) → ((gateway = n)W¬SubNet)]
6. �[∀n, m : SubNet ∧ Cell(n) ∧ Cell(m) ∧ (n �= m) → (n.address �= m.address)]
7. �[∀x ∈ integer : SubNet ∧ s-init(x) → gateway .c-init(x)]
8. �[∀x ∈ integer : SubNet ∧ s-init(x) → ©(∀n : Cell(n) → (n = gateway))]
9. �[∀n : ∀x ∈ integer : SubNet ∧ add-cell (n, x) → ¬Cell(n)]
10. �[∀n : ∀x ∈ integer : SubNet ∧ add-cell(n, x) → ©(Cell(n) ∧ n.c-init(x))]
11. �[∀n : SubNet ∧ ¬Cell(n) ∧©(Cell(n)) → ∃x ∈ integer : add-cell(n, x)]
12. �[∀n : SubNet ∧ rem-cell(n) → Cell(n)]
13. �[∀n : SubNet ∧ rem-cell(n) → ©(¬Cell(n))]
14. �[∀n : SubNet ∧ Cell(n) ∧©(¬Cell(n)) → rem-cell(n)]
EndOfSubsystem

Fig. 3. Subsystem SubNet : A Basic Subsystem Specification

Subsystems are interpreted as temporal theories, in the same way classes
are. The temporal theory for a subsystem Sub is constructed from: (i) the
axioms explicitly provided as part of the Sub specification, (ii) the axioms in
ADT NAME, and (iii) the axioms of the classes or subsystems of the lower
layer, relativised by universally quantifying the extra argument of sort NAME
added to read variables, attributes and actions. Indeed, note that some of
the axioms of the SubNet subsystem use the language of the classes (i.e., of
the components of the lower layer). For instance, Axioms 6 and 10 use the
“dot notation” (borrowed from object orientation) to denote the “instances”
to which attributes or actions correspond to (see, for instance, the expression

3 Note that we could not express such a requirement within Cell ’s theory, since it is a
structural property, and a class’s language allows us to refer only to the internal constituents
of that class.

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 77



n.address in Axiom 6). These prefixes are actually a convenient way of de-
noting the extra NAME-typed argument incorporated in the read variables,
attributes and actions of the class and subsystem definitions of the lower lay-
ers. That is, expressions such as n.address and n.c-init(x) actually correspond
to address(n) and c-init(x, n), respectively [1].

The process of relativisation has a nice property: if α is the consequence
of a set of formulae Γ, then the relativisation α′ of α is a consequence of
the relativisation Γ′ of Γ [2]. An important consequence of this property is
that, since we incorporate the relativisation of the axioms of the lower layers
definitions into the including subsystem, all theorems (i.e., properties) of the
lower layer components are promoted into the including subsystem. To clarify
this situation, consider for example the following formula:

�[∀m ∈ message : Cell ∧ cons(m) → ©(curr-in = null)]

This is a trivial theorem within Cell (it is, actually, an axiom), whose intuitive
reading is: “In all states it is the case that, if the cell is active and cons(m)
occurs for some message m, then the attribute curr-in is set to null in the next
state of the system”. This property is promoted into SubNet as the formula:

∀n : �[∀m ∈ message : Cell(n) ∧ n.cons(m) → ©(n.curr-in = null)]

whose intuitive reading is: “In all states it is the case that, if n is a live cell
and n.cons(m) occurs for some message m, then the attribute curr-in of n is
set to null in the next state of the system”.

4 Complex Subsystems

Association S-Link
Participants s , t : SubNet
Connections
1. (s .gateway .in = T) ↔ (t .gateway .curr-out �= null)
2. (s .gateway .out = T) ↔ (t .gateway .curr-in = null)
3. (t .gateway .in = T) ↔ (s .gateway .curr-out �= null)
4. (t .gateway .out = T) ↔ (s .gateway .curr-in = null)
5. ∀m ∈ message : (s .gateway .send(m) → t .gateway .get(m))
6. ∀m ∈ message : (t .gateway .send(m) → s .gateway .get(m))
EndOfAssociation

Fig. 4. Association S-Link : An association between subsystems.

In the previous section, we allowed subsystems to be defined in terms of
simpler subsystems. An important restriction is that the definition of sub-
systems cannot be cyclic. This is due to the fact that the semantics of a
subsystem is based on the relativisation and inclusion of the presentations of

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8178



the classes and subsystems of the lower layers, which of course is not possible
if the subsystem dependency is cyclic.

In order to show how more complex subsystems can be defined, let us fur-
ther extend the previous examples. Now that we have cells, links and subnets,
we can define a network, composed of two subnets. In order to allow these sub-
nets to communicate, we define a (higher level) association, as in Fig. 4. This
association connects two subnets by connecting the corresponding gateways,
in the same way Link connects cells. This is a generalisation of associations
as defined in [1], since we now allow for subsystems to be participants, and
not only basic components. Note also that multiple “dots” are employed to
refer to attributes or actions of components within subsystems.

A network can now be easily defined as a higher level subsystem, as shown
in Fig. 5. The first four axioms correspond to structural constraints. For
instance, Axiom 3 indicates that subnets sn1 and sn2 are connected via a
S-Link connection, while the network is active. A network can communicate
with the outside world (e.g., other networks) through the router cell. Op-
erations conn and disconn manage the access to the router for the subnets
within the network (see Axioms 4-5). Finally, Axiom 6 indicates that two
cells in different subnets cannot have the same address.

Subsystem Network
Attributes router , sn1 , sn2 : NAME
Actions conn(NAME), disconn(NAME)
Axioms
1. �[Network → (Cell (router) ∧ SubNet(sn1 ) ∧ SubNet(sn2 ))]
2. �[Network → sn1 �= sn2 ]
3. �[Network → S-Link(sn1 , sn2 )]
4. �[∀s : Network ∧ conn(s) → ((¬Link(router , s.gateway))∧ (©Link(router , s.gateway))]
5. �[∀s : Network ∧ disconn(s) →
((Link(router , s.gateway)) ∧ (©¬Link(router , s.gateway))]
6. �[∀s1, s2, n, m : Network ∧ SubNet(s1) ∧ SubNet(s2)∧
Cell(n, s1) ∧ Cell(m, s2) ∧ (s1 �= s2) → (n.address �= m.address)]
EndOfSubsystem

Fig. 5. Subsystem Network : A higher level Subsystem Specification

It is clear from this example how the languages of the more basic subsys-
tems and components are incorporated and used in a higher level subsystem.
Again, the structurality property of the logic allows us to promote theorems
from the lower layers of a specification to the upper layers. For instance, the
subnet property

�[∀n : SubNet ∧ Cell(n) ∧©(¬Cell(n)) → rem-cell(n)]

can be promoted into a network as:

∀s : �[∀n : SubNet(s) ∧ Cell(n, s) ∧©(¬Cell(n, s)) → rem-cell(n, s)].

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 79



We can then combine reasoning at different levels of a hierarchical specifica-
tion to prove properties of the whole system. Unfortunately, due to space
restrictions, we are unable to reproduce here a proof combining reasoning at
all levels of a hierarchical specification.

5 Conclusion

We have presented an extension to a prototypical temporal specification lan-
guage for specifying dynamic software architectures. The objective of the
extension is to allow for hierarchical organisations of systems specifications, in
terms of reconfigurable subsystems. We have generalised the concepts of asso-
ciation and subsystem, and shown an example illustrating the expressiveness
of the extension.

One of the main characteristics of the formalism, which partially motivated
our work, is the possibility of describing reconfigurable systems declaratively.
Declarative specifications tend to be longer than operational ones; thus, mech-
anisms for modularising declarative specifications are crucial. The notion of
subsystem complements the notion of basic component and allows us to fur-
ther modularise specifications. Since components are hierarchically described,
using classes and subsystems, as closed independent units, proofs can be lo-
calised to the relevant subparts of a specification.

We have already shown some evidence of the logic being expressive enough
for specifying dynamic software architectures. We believe then that the logic
is suitable as a “reasoning framework” for formal ADLs. Moreover, the logic
could be used to provide a declarative semantics to some ADLs. Specifications
in ADLs could be interpreted into the logic, and then the proof capabilities of it
could be used in order to reason about properties of the specifications. We are
currently exploring this line of work, mapping CommUnity [15] specifications
into the logic in order to reason about properties of the specifications.

Even for simple systems, specifications tend to be large and complex. Al-
though modularisation mechanisms help in alleviating the proof efforts, soft-
ware tool support is a necessity. At the moment, we are experimenting with
the use of the Stanford Temporal Prover (STeP) [4] in order to assist in the
proofs in our logic.

References

[1] N. Aguirre and T. Maibaum, A Logical Basis for the Specification of Reconfigurable Component-
Based Systems, in Proc. of FASE 2003, Warsaw, Poland, LNCS 2621, Springer, 2003.

[2] N. Aguirre and T. Maibaum, Some Institutional Requirements for Temporal Reasoning about

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–8180



Dynamic Reconfiguration, to appear in Proc. of Symposium on Verification: Theory and
Practice, Taormina, Italy, LNCS, Springer, 2003.

[3] R. Allen, R. Douence and D. Garlan, Specifying and Analyzing Dynamic Software Architectures,
in Proc. of FASE 98, Lisbon, Portugal, LNCS, Springer, 1998.

[4] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma and T. Uribe, Verifying
Temporal Properties of Reactive Systems: a STeP Tutorial, in Formal Methods in System
Design, vol 16, 2000.

[5] J. Fiadeiro and T. Maibaum, Temporal Theories as Modularisation Units for Concurrent
System Specification. Formal Aspects of Computing, vol. 4, No. 3, Springer, 1992.

[6] J. Fiadeiro and A. Sernadas, Structuring Theories on Consequence, in D. Sannella and A.
Tarlecki (eds), Recent Trends in Data Type Specification, LNCS 332, Springer, 1988.

[7] D. Garlan, Software Architecture: A Roadmap, in The Future of Software Engineering, A.
Filkenstein (ed), ACM Press, 2000.

[8] D. Garlan, R. Monroe and D. Wile, ACME: An Architecture Description Interchange Language,
in Proc. of CASCON’97, 1997.

[9] D. Garlan and D. Perry, Software Architecture. Panel Introduction. In Proc. of ICSE ‘94,
Sorrento, Italy, 1994.

[10] J. Goguen and R. Burstall, Institutions: Abstract Model Theory for Specification and
Programming, Journal of the ACM 39(1): 95-146, ACM Press, 1992.

[11] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying Distributed Software Architectures,
in Proc. of ESEC’95, Sitges, Spain, LNCS 989, Springer, 1995.

[12] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Springer,
1991.

[13] N. Medvidovic, ADLs and Dynamic Architecture Changes, in Proc. of ISAW 96, 1996.

[14] B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice-Hall International,
2000.

[15] M. Wermelinger and J. Fiadeiro, A Graph Transformation Approach to Software Architecture
Reconfiguration, in Science of Computer Programming 44, Elsevier, 2002.

N. Aguirre, T. Maibaum / Electronic Notes in Theoretical Computer Science 108 (2004) 69–81 81


	Introduction
	A Temporal Specification Language
	Describing Components
	Describing Interactions

	A Notation for Subsystems
	Complex Subsystems
	Conclusion
	References

