
Describing and Analyzing Behaviours over
Tabular Specifications using (Dyn)Alloy

Nazareno M. Aguirre1, Marcelo F. Frias2, Mariano M. Moscato2, Thomas
S. E. Maibaum3, and Alan Wassyng3

1 Department of Computer Science, FCEFQyN, Universidad Nacional de Rio Cuarto
and CONICET, Argentina, naguirre@dc.exa.unrc.edu.ar

2 Department of Computer Science, FCEyN, Universidad de Buenos Aires and
CONICET, Argentina, {mfrias,mmoscato}@dc.uba.ar

3 Department of Computing and Software, McMaster University, Canada,
tom@maibaum.org, wassyng@mcmaster.ca

Abstract. We propose complementing tabular notations used in re-
quirements specifications, such as those used in the SCR method, with a
formalism for describing specific, useful, subclasses of computations, i.e.,
particular combinations of the atomic transitions specified within tables.
This provides the specifier with the ability of driving the execution of
transitions specified by tables, without the onerous burden of having to
introduce modifications into the tabular expressions; thus, it avoids the
problem of modifying the object of analysis, which would make the anal-
ysis indirect and potentially confusing. This is useful for a number of
activities, such as defining test harnesses for tables, and concentrating
the analyses on particular, interesting, subsets of computations. Unlike
previous approaches, ours allows for the description of a wider class of
combinations of the transitions defined by tables, by means of a rich op-
erational language. This language is an extension of the Alloy language,
called DynAlloy, whose notation is inspired by that of dynamic logic.

The use of DynAlloy enables us to provide an extra mechanism for the
analysis of tabular specifications, based on SAT solving. We will illustrate
this and the features of our approach via an example based on a known
tabular specification of a simple autopilot system.

1 Introduction

Tabular notations, originally used to document requirements by D. Parnas and
others [9], have proved to be a useful means for concisely describing expressions
characterizing complex requirements. Indeed, tables have been successfully in-
corporated into various formalisms for requirements specification, most notably
those reported in [12, 7]. The central use of tables in the description of software
requirements is as a way of organizing formulas that specify the relations that
the system must maintain with the environment. Since these formulas would be
large and complex in their traditionally linear notation, their division into well
distinguished smaller formulas that are easier to follow, provided by the tabular

notation, has great advantages. A tabular specification then consists of a collec-
tion of tables, which combined specify a relation R, characterizing the intended
behaviour of the system. There exist different classes of tables, but essentially all
are descriptions of relations of some form in terms of guards and result values.
The whole specified system is then typically composed of a disjunction of these
guarded expressions, describing, intuitively, all transitions.

We are concerned with complementing tabular notations with a way of pre-
scribing specific combinations of transitions defined in tabular descriptions. As
we will argue later on, this enables the specifier to drive the execution of transi-
tions defined by tables, which is useful for defining test harnesses for tables, and
concentrating the analysis activities on particular execution scenarios, namely
those corresponding to the prescribed combinations.

Contributions of this paper. The contributions of this paper are twofold. First, we
propose a notation for prescribing subsets of the set of all possible executions of
a tabular specification. The notation is very expressive, based on an operational
language called DynAlloy [4], an extension of the Alloy specification language
[10]. This has as an advantage that the specifier can concentrate the analyses on
the particular sets of runs he is interested in with a potentially great impact on
the efficiency and effectiveness of the analyses. The proposed notation enables
the specifier to describe sets of executions by means of programs referring to the
tabular descriptions, without the need to introduce modifications in the tables.
These descriptions are written in a language accessible to the specifier familiar
with tabular descriptions.

Second, we provide an additional analysis mechanism for tabular specifica-
tions, based on SAT solving, and supporting the above mentioned notation for
prescribing sets of executions. This analysis mechanism is based on a translation
of the tabular specifications into Alloy and DynAlloy, and the use of the Alloy
and DynAlloy Analyzers for performing SAT based analysis.

Related Work. The described tabular notations, and in particular the tabular
expressions used in the SCR (Software Cost Reduction) method [7], have associ-
ated tool support, which provide different kinds of analysis, ranging from simple
syntax checking to theorem proving and model checking of properties [3, 8, 13].
However, most analyses we are aware of apply to the whole set of behaviours as-
sociated with tables; more precisely, most techniques for analyzing properties of
behaviours are concerned with the global set of “atomic transitions”, described
in the tables. Generally, there is a lack of a notation for describing particular
combinations of these atomic transitions or tables. An exception to this is the
case of the simulator in the SCR toolset [8]. The simulator allows the developer
to load specific scenarios and check whether certain associated assertions are vi-
olated or not in the particular executions described by the scenarios. Also, in an
approach described in [5] and defined for testing purposes in the context of SCR
[7], modes (essentially classes of states) are exploited as a means for singling out
a proper subset of all possible transition sequences allowed by a tabular specifi-
cation. These approaches have some limitations. The use of the first alternative

becomes impractical if the set of execution scenarios one is interested in is large,
since each execution scenario needs to be individually described. On the other
hand, the second alternative allows for the description (and analysis) of large
proper subsets of the set of executions associated with a tabular description,
but all these executions are similarly obtained, essentially by considering all the
execution sequences that “go through” (or, more precisely, “end up at”) a given
set of modes. This is insufficient if one is interested in more sophisticated exe-
cution sequences, resulting from table sequencings not obtainable by “filtering”
executions according to some of the existing modes. Of course, one might decide
to include new modes and mode classes to enforce these particular sequencings
of the transitions modelled by tables; however, this last alternative is, in our
opinion, unsuitable, since it would require altering the tables and introducing
new modes and mode classes to enforce the sequencing; clearly, this is inap-
propriate, and potentially dangerous, if the sequencing is not really part of the
requirements, but particular behaviours the modeller wants to analyze.

2 An Example of Tabular Specifications

In order to illustrate how transitions are typically specified by tables, we will use
the SCR approach to requirements specification. We will describe the notation
via an SCR specification, given in [2], of the requirements for a simple autopilot
system. This will also serve us as a case study for illustrating our proposal.

In the SCR methodology, tables are used for describing the relationship that
the system should induce between monitored and controlled variables. In order to
describe this relationship, SCR uses events, conditions, mode classes and terms.
Events occur when changes in the variables observed by the system take place
(these variables include monitored and controlled variables, as well as modes and
terms), and conditions are logical expressions referring to these variables. Modes
represent classes of states of the system (whose corresponding partition is called
a mode class), and terms are functions on the variables of the specification.

The autopilot needs to monitor three environment variables, the aircraft’s
altitude, flight path angle and calibrated air speed, represented by monitored
variables mALTactual, mFPAactual and mCASactual, respectively. It also mon-
itors the status of some elements in the autopilot’s control panel, which are
four switches, represented also by monitored variables mALTsw, mATTsw, mCASsw
and mFPAsw, and three knobs for changing the desired altitude, flight path angle
and calibrated air speed (these values are represented by monitored variables
mALTdesired, mFPAdesired and mCASdesired, respectively). The system has to
control three displays, which show either the actual or desired altitude, flight
path angle and calibrated air speed (displays are represented by controlled vari-
ables cALTdisplay, cFPAdisplay and cCASdisplay), depending on the state of
the system. The four switches allow the pilot to activate the modes ATTmode,
ALTmode, FPAmode and CASmode of the system. The displays usually show the cur-
rent altitude, flight path angle and calibrated air speed, unless the pilot changes
one of these desired values (i.e., “preselects” a value) and activates the corre-

sponding mode. In this case, the display will show the desired value instead of
the actual one. Each display will show the corresponding current value (instead
of the desired value) when the corresponding mode is manually disengaged, or
when the desired value is reached. Modes are engaged/disengaged by setting the
corresponding switches, although the system cannot be engaged in more than
one of the modes ALTmode and FPAmode, so entering one of these should disengage
the previous mode. There is an extra mode, the attitude control wheel steering,
in which the system is set when neither ALTmode nor FPAmode are engaged. The
CASmode can be engaged independently of the other modes, at any time.

When the pilot attempts to engage the system into the ALTmode, setting the
desired altitude to one that is more that 1200 feet above the current altitude,
the system will not engage directly in the ALTmode; in this situation, the system
will switch to the mode FPAmode, in an “armed” mode. Then the system will
require the pilot to enter a flight path angle (that to follow until the aircraft gets
within 1200 feet away from the desired altitude), after which the system will
move to an “unarmed” mode. Once the aircraft reaches the point where it is less
than 1200 feet from the desired altitude, it engages the mode ALTmode. When
a mode other than CASmode is engaged, the other preselected displays return to
show the current value (instead of the desired one).

In the formalization of the autopilot system’s requirements we are repro-
ducing here, the FPAmode is splitted into two different modes, FPAarmed and
FPAunarmed, to differentiate the cases in which the FPAmode is armed (waiting
for the flight path angle to be set after the mALTsw was switched on at an al-
titude lower than 1200 feet below the desired altitude) and the case in which
the FPAmode is unarmed. These two modes together with modes ALTmode and
ATTmode constitute the only mode class of the system, called mcStatus. Also,
terms tALTpresel, tCASpresel and tFPApresel are introduced to characterize
the states in which the desired altitude, calibrated air speed and flight path an-
gle have been preselected, and the CASmode is also represented as a term. An
additional term tNear is used to characterize the states in which the difference
between the desired and actual altitudes is smaller than 1200.

For describing events, SCR provides a simple notation. The notation @T(c)
WHEN d describes the event in which expression c becomes true, when d is true
in the current state, i.e., it represents the expression c’∧c∧d, where the primed
expression refers to the next state. If d is true, the ‘WHEN’ section is not written.
Also, the event CHANGED(v) indicates that v has changed, i.e., it represents the
expression v′ 6= v. The table describing the mode transitions, as well as the
values for terms tALTpresel and tFPApresel is the first one in Figure 1. This
table corresponds to the merge of a mode transition table, describing the mode
transitions, and two event tables. The values of the displays are defined by
the next three small condition tables in Fig. 1. Finally, terms tCASmode and
tCASpresel get defined by the bottom event table in Fig. 1. Term tNear has a
definition which is independent of modes, conditions and events; its definition is
simply mALTdesired− mALTactual ≤ 1200.

Mode Class = mcStatus

Old mode Events New mode tALTpresel tFPApresel

ATTmode @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) true

ALTmode @T(mATTsw=on) ATTmode false false

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) true

@T(mALTdesired = mALTactual) false

FPAarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) AND NOT (mFPAdesired’ = mFPAactual’) true

@T(tNear) AND (mALTdesired’ = mALTdesired) ALTmode false

@T(mFPAdesired = mFPAactual) false

FPAunarmed @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) AND NOT (mFPAdesired’ = mFPAactual’) true

@T(mFPAdesired = mFPAactual) false

Conditions

tALTpresel NOT tALTpresel

cALTdisplay = mALTdesired mALTactual

Conditions

tCASpresel NOT tCASpresel

cCASdisplay = mCASdesired mCASactual

Conditions

tFPApresel NOT tFPApresel

cFPAdisplay = mFPAdesired mFPAactual

Term = tCASmode

Events tCASmode tCASpresel

NOT tCASmode @T(mCASsw=on) true

CHANGED(mCASdesired) true

tCASmode @T(mCASsw=on) false false

@T(mCASdesired = mCASactual) false

CHANGED(mCASdesired) AND NOT (mCASdesired’ = mCASactual’) true

Fig. 1. Tabular specification of the autopilot system.

3 The Alloy and DynAlloy Modeling Languages

In the description of the autopilot system, the datatypes associated with the
variables are obvious: numeric values range over integers, states for switches can
be characterized by boolean values, and the possible values for the mode class
mcStatus can be the defined modes for the system. In Alloy, these datatypes
would be defined by signatures. For instance, the datatype associated with mode
class mcStatus can be straightforwardly defined in Alloy in the following way:

abstract sig StatusMode { }

one sig ALTmode, ATTmode, FPAmode extends StatusMode { }

Abstract signatures have as their only associated elements, those of their non
abstract “subsignatures”. The modifier one forces the corresponding signatures
to have exactly one element, i.e., to be singletons. Thus, the above Alloy spec-
ification defines an enumerated set. More complex data domains can also be
defined via signatures, using typed fields. For instance, we can define a signa-
ture to characterize the state associated with the autopilot system, composed of
monitored and controlled variables, mode classes and state dependent terms, in
the following way:

sig State {

-- Monitored Variables

mALTactual, mCASactual, mFPAactual, mALTdesired, mCASdesired,

mFPAdesired: Int,

mALTsw, mATTsw, mCASsw, mFPAsw: SwitchState,

-- Controlled variables

cALTdisplay, cCASdisplay, cFPAdisplay: Int,

-- Mode classes

mcStatus: StatusMode,

-- Terms

tARMED, tCASmode, tALTpresel, tCASpresel, tFPApresel: Boolean

}

Fields, which can have relational types, are interpreted as relations from the set
associated with the signature in which the field is defined to the relation given
as a type of the field. Thus, for instance, field mcStatus in signature State is
interpreted as a relation from State to StatusMode.

Using signatures and fields, it is possible to build more complex expressions
denoting relations, with the aid of the Alloy operators. Operator ∼ denotes
relational transposition, ∗ denotes reflexive-transitive closure, and ^ denotes
transitive closure of a binary relation. Operator + denotes union, & denotes
intersection, and dot (.) denotes composition of relations, generalized to n-ary
relations and having relational image as a special case. In all cases, the typing
must be adequate. Formulas are built from expressions. Binary predicate in
checks for inclusion, while = checks for equality. From these (atomic) formu-
las we define more complex formulas using standard first-order connectives and
quantifiers. Negation is denoted by !. Conjunction, disjunction and implication
are denoted by &&, || and =>, respectively. Finally, quantifications have the
form some a : A | α(a) and all a : A | α(a). These formulas can be used in order
to describe assumed as well as intended properties of the models. Parameterized
formulas, which can be used for describing properties, can be written in Alloy
using predicates. For instance, we can define a predicate for characterizing event
@T(mATTsw = on), as follows:

pred Ev_TmALTswOn(s,s’: State) { s.mALTsw != on && s’.mALTsw = on }

Assumed properties of the specified data domains can be given as facts in Alloy.
We can use facts for characterizing the values of terms or other variables de-
fined via condition tables in a straightforward way. For our presented example,
the values associated with controlled variables cALTdisplay, cCASdisplay and
cFPAdisplay can be enforced using a fact, in the following way:

fact {

all s: State | (s.tALTpresel = trueValue =>

s.cALTdisplay = s.mALTdesired else

s.cALTdisplay = s.mALT) &&

(s.tCASpresel = trueValue =>

s.cCASdisplay = s.mCASdesired else

s.cCASdisplay = s.mCASactual) &&

(s.tFPApresel = trueValue =>

s.cFPAdisplay = s.mFPAdesired else

s.cFPAdisplay = s.mFPAactual)

}

Intended properties, those to be checked, are defined in Alloy using assertions.
For instance, we can consider the following assertion, corresponding to a dis-
jointness check for the mode transition table associated with mcStatus:

assert DisjointnessCheck {

all s, s’: State | ! (s.mcStatus = ATTmode &&

(Ev_TmALTswOn[s,s’] && s.tALTpresel = trueValue && s.tNear = trueValue) &&

(Ev_TmALTswOn[s,s’] && s.tALTpresel = trueValue && !(s.tNear = trueValue))

}

In Alloy, operations over the defined domains are specified using predicates. Dy-
nAlloy, on the other hand, incorporates the notion of action for specifying op-
erations. Atomic actions, which are the basic units for specifying state change,
are defined via pre- and post-conditions. This kind of description for an action
indicates that, for the action to be executed, its precondition must be true, and
in this case the state resulting from the execution of the action satisfies the
postcondition. As a simple example, consider the following action, which char-
acterizes the change of the monitored variable mALTactual (and the arbitrary
change of the event-dependent terms and controlled variables):

act mALTactualChange[s: State] {

pre { }

post { s’.mALTactual != s.mALTactual && s’.mCASactual = s.mCASactual &&

s’.mFPAactual = s.mFPAactual && s’.mALTsw = s.mALTsw &&

s’.mATTsw = s.mATTsw && s’.mCASsw = s.mCASsw &&

s’.mFPAsw = s.mFPAsw && s’.mALTdesired = s.mALTdesired &&

s’.mCASdesired = s.mCASdesired && s’.mFPAdesired = s.FPAdesired }

}

Atomic actions can be composed to form composite actions (also called pro-
grams). These are built using sequential composition (;), nondeterministic choice
(+), test ([f]?, an action that does not modify the state but can only be ex-
ecuted when f is true) and iteration (*). For example, if we consider atomic
actions describing the change of each of the monitored variables (as we did
above for monitored variable mALTactual), then the following composite action
characterizes the change of one of the monitored variables:

program monitoredVarChange[s: State] {

mALTactualChange[s] + mCASactualChange[s] + mFPAactualChange[s] +

mALTswChange[s] + mATTswChange[s] + mCASswChange[s] + mFPAswChange[s] +

mALTdesiredChange[s] + mCASdesiredChange[s] + mFPAdesiredChange[s]

}

This language for describing composite actions is what we are primarily inter-
ested in exploiting. DynAlloy also allows the specifier to write assertions as-
sociated with his programs, i.e., intended properties of the executions of the
programs, to be checked. These properties to be checked are also given in the
form of partial correctness assertions, i.e., by pre- and post-conditions. For exam-
ple, the following DynAlloy assertion expresses that the above program cannot
change mALTactual and mCASactual at the same time:

assertCorrectness[s:State] {

pre { }

program monitoredVarChange[s]

post { !(s’.mALTactual != s.mALTactual && s’.mCASactual != s.mCASactual)}

}

Alloy assertions can be automatically analyzed using the Alloy Analyzer.
The mechanism for analysis is based on SAT solving. Basically, given a system
specification and a statement about it, the Alloy tool exhaustively searches for a
counterexample of this statement under the assumptions of the system descrip-
tion, by reducing the problem to the satisfiability of a propositional formula.
Since the Alloy language is first-order, the search for counterexamples has to be
performed up to a certain bound k in the number of elements in the universe of
the interpretations. Thus, in order to check an assertion, the user has to provide
bounds for the number of elements in the domains (associated with signatures)
of the specification. Obviously, this analysis is not a decision procedure, since
it cannot be used in general to guarantee the absence of counterexamples for a
theory [10]. Nevertheless, it is useful in practice, since it allows one to discover
counterexamples of intended properties, and if none is found, gain confidence
about our specifications. This is similar in spirit to testing, since one checks the
truth of a statement for a number of cases; however, as explained in [11], the
scope of the technique is much greater than that of testing, since the space of
cases examined (usually in the order of billions4) is beyond what is covered by
testing techniques, and it does not require one to manually provide test cases.

DynAlloy assertions can also be analyzed automatically, by means of the same
mechanism. Essentially, the DynAlloy Analyzer translates a DynAlloy assertion
into an Alloy specification, which then can be analyzed using the Alloy Analyzer.
In order to do so, the DynAlloy Analyzer needs, besides the bounds for the
domains, an extra bound for iteration. This extra bound is used by the DynAlloy
Analyzer to “unroll” the iterations in the program to be checked.

4 Characterizing Tables in DynAlloy

Part of the characterization of tables in DynAlloy has already been introduced in
the previous section. First, type definitions, including the definition of signature
State, are defined as shown in previous sections. The state of the system is
composed of system variables, mode classes and terms. Second, each of the events
mentioned in the tables gives rise to a corresponding predicate definition. Third,
event independent terms and controlled variables, defined by condition tables,
are constrained in Alloy using facts, as shown before for the displays. These
facts are automatically synthesized from the condition tables. Fourth, mode
transitions, described in a mode transition table, give rise to an Alloy predicate
characterizing the transitions. In our case, this predicate is the following:

4 This is so because, even for simple specifications and relatively small bounds, the
number of bounded possible instances of the model, i.e., the cases to be examined,
can be very large, easily reaching billions of possible instances [11].

pred NEXTmcStatus(s, s’: State) {

s.mcStatus = ALTmode &&

(Ev_TmATTswOn[s,s’] || Ev_ChangedmALTdesired[s,s’]) =>

s’.mcStatus = ATTmode else

(s.mcStatus = ALTmode && Ev_TmFPAswOn[s,s’] => s’.mcStatus = FPAmode else

(s.mcStatus = ATTmode && Ev_TmALTswOnWhentALTpreselAndtNear[s,s’] =>

s’.mcStatus = ALTmode else

(s.mcStatus = ATTmode && (Ev_TmFPAswOn[s,s’] ||

Ev_TmALTswOnWhentALTpreselAndNottNear[s,s’]) =>

s’.mcStatus = FPAmode else

(s.mcStatus = FPAmode && (Ev_TmALTswOnWhentALTpreselAndtNear[s,s’] ||

Ev_TtNearWhentARMED[s,s’])

=> s’.mcStatus = ALTmode else

(s.mcStatus = FPAmode && (Ev_TmATTswOn || Ev_TmFPAswOn ||

Ev_ChangedmALTdesiredWhentARMED[s,s’])

=> s’.mcStatus = ATTmode

else s’.mcStatus = s.mcStatus)))))

}

Notice that we are making use of the predicates associated with the events.
Clearly, predicate NEXTmcStatus corresponds to the formula specified using a
tabular notation in SCR. We follow a similar process for controlled variables and
terms defined by event tables. For instance, we will have a predicate associated
with the event table defining tCASmode, etc. Finally, using these predicates we
define a single DynAlloy action, called stateChange, as follows:

act stateChange[s: State] {

pre { }

post { monitoredVariableChange[s,s’] && NEXTmcStatus[s,s’] &&

NEXTtARMED[s,s’] && NEXTtCASmode[s,s’] &&

NEXTtALTpresel[s,s’] && NEXTtCASpresel[s,s’] && NEXTtFPApresel[s,s’] }

}

where monitoredVariableChange is an Alloy predicate characterizing the change
of a monitored variable. Other elements of a tabular specification, such as ini-
tial states, are also straightforwardly characterized in DynAlloy. The important
point here is that the generation of the DynAlloy specification corresponding to
the tabular descriptions is fully automated.

With the DynAlloy characterization of the tabular specification, we can do
various analyses. For instance, we can use the Alloy Analyzer for checking dis-
jointness and completeness associated with tables (an example of this is assertion
DisjointnessCheck given in the previous section). We can also check proper-
ties of all executions, using the DynAlloy Analyzer. For instance, we could check
that, whenever the system is in the ALTmode, the altitude display shows the de-
sired altitude. This is specified using the following DynAlloy assertion:

assert basicProgram {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* }

post = { (s’.mcStatus = ALTmode) => (s’.cALTdisplay = s’.mALTdesired) }

}

}

where initialState is a predicate describing the initial state for the system
(also synthesized from the tabular specification).

5 Specifying and Analyzing Sets of Executions via
DynAlloy Programs

Most of the analysis techniques associated with tabular specifications, including
the SAT based analysis described in the previous section, have their efficiency
tied to the size of the specification (or, put in a different way, to the number of
possible runs associated with the specification). We propose here a notation for
describing subsets of the executions of a tabular specification. The notation is
essentially that of DynAlloy programs, complemented with a way of restricting
action stateChange, our only atomic action, representing a change in the state
of the system as defined by the tables. Intuitively, the conditioned atomic action
definition:

stateChange<<f[s,s’]>>[s]

where f[s,s’] is a formula referring to the pre and post states, corresponds to
action stateChange occurring, with f also taking place in the transition. For
example, the following actions:

stateChange<<@T(mALTsw = on)>>[s] stateChange<<NOT @T(mALTsw = on)>>[s]

correspond to action stateChange, restricted to the facts that the mALTsw switch
must be switched on in the change, and must not be switched on in the change,
respectively. If an action a is defined by pre and postconditions pre a and
post a, then its semantics is the relation associated with the formula pre a[s]∧
post a[s, s′]. Action a<<f[s,s’]>> has instead as its semantics the relation as-
sociated with the formula pre a[s]∧ post a[s, s′]∧ f[s, s′]. Since the restrictions
for atomic action stateChange are provided by the user, the SCR notation is
employed for expressing them. In this way, the specifier used to the tabular no-
tation will not need to deal directly with (Dyn)Alloy. The idea is, of course, that
(Dyn)Alloy should be used as a backend for analysis.

Let us consider as a first example of the use of the notation the following.
If none of the switches in the panel are switched, then the mode remains being
that of the initial state, namely ATTmode. This is expressed as follows:

assert SimpleCheck {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange<<!@T(mATTsw = switchOn)

AND !@T(mFPAsw = switchOn) AND !@T(mALTsw = switchOn)>>[s]* }

post = { s’.mcStatus = ATTmode }

}

}

Another example is the following. Suppose that one wants to check if, once the
ALTmode is on, if no switch is switched afterwards then either the current mode
is ALTmode, or is back to mode ATTmode (i.e., the ALTmode is deactivated because
the desired altitude was reached). This is expressed as follows:

assert ALTmodeDisengagedWhenALTreached {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* ; [s.mcStatus = ALTmode]? ;

stateChange<<!@T(mATTsw = switchOn) AND !@T(mFPAsw = switchOn)

AND !@T(mALTsw = switchOn)>>[s]* }

post = { s’.mcStatus = ALTmode || s’.mcStatus = ATTmode }

}

}

These examples use conditioned actions, test actions, iteration and sequential
composition. Let us now consider the following assertion: If the mALTsw is pressed
below 1200 from the desired altitude, then if the panel is not touched and the
airplane reaches an altitude higher than or equal to the desired altitude, the
airplane moves to ALTmode and the altitude display shows the current altitude.
This is expressed in the following way:

assert BackToALTWhenALTpassed {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* ;

[s.mALTdesired - s.mALTactual > 1200]? ;

stateChange<<@T(mALTsw = switchOn)>>[s] ;

stateChange<<!@T(mATTsw = switchOn) AND !@T(mFPAsw = switchOn)

AND !@T(mALTsw = switchOn) AND

NOT Changed(mALTdesired) AND

NOT Changed(mFPAdesired) AND

NOT Changed(mCASdesired)>>[s]* ;

[s.mALTactual > s.mALTdesired]? ; }

post = { s’.mcStatus = ALTmode && s’.cALTdisplay = s’.mALTactual }

}

}

Via programs, we externalize the specification of control flow from tabular spec-
ifications. Notice that the number of possible executions of these programs if
iterated just a few times is huge, due to the various different branches these
can follow in different iterations; this is beyond the scope of what can practi-
cally be done by manually defining executions for simulation, for instance by
using the SCR toolset’s simulator. Notice that tables in a specification describe
a labeled transition relation, and a system’s behaviour is understood as the
reflexive-transitive closure of this relation. For these relations to adequately de-
scribe the wanted behaviours associated with any of the properties to be checked
given in this section, it would be necessary to include control variables (or new
modes) whose values rule out undesired control flows. Some of these variables
can be deemed unnecessary by using an action language allowing us to externally
define complex behaviours, as the one we propose.

Although in this paper we analyze programs over tabular specifications using
SAT-solving, via the (Dyn)Alloy and DynAlloy analyzers, the notation is not
limited to this usage. For instance, it is relatively straightforward to translate
assertions of the kind shown in this section to the input languages of other
analysis tools, in particular model checking tools.

6 Synthesis for Conditioned Atomic Actions

According to the semantics of conditioned atomic actions, it is clear that we can
straightforwardly synthesize new DynAlloy atomic actions for each of the con-
ditioned atomic actions used by the specifier. For instance, conditioned atomic
action stateChange<<@T(mcStatus = ATTmode)>>[s,s’] would lead to the fol-
lowing DynAlloy atomic action:

act stateChangeCondEv_TmcStatusATTmode[s: State] {

pre { } post { postStateChange[s,s’] && Trans(@T(mcStatus = ATTmode)) }

}

where postStateChange is the original postcondition of action stateChange and
Trans(@T(mcStatus = ATTmode)) corresponds to the mapping of @T(mcStatus
= ATTmode) into Alloy’s syntax (and the predicates associated with events in-
troduced). However, this has some disadvantages. Conditioned actions, which
should be restrictions of the original atomic actions, are actually more complex.
This has a negative impact with respect to analysis, as it will be made clearer in
the next section. Therefore, we consider an alternative mechanism for generat-
ing the corresponding DynAlloy definition of a conditioned atomic action. This
mechanism makes use of the information associated with the wellformedness of
tabular specifications (in particular, disjointness), and the semantics of tables.

Assuming that we have already checked the wellformedness of our tabular
specifications, as defined in [6], the process for synthesizing a DynAlloy atomic
action from a conditioned action stateChange[e] works by identifying a subset
of the events used in the tables, the set of incompatible events with respect to
e. We restrict the construction to atomic events of the form @T(v = c), @F(v
= c), CHANGED(x), @T(v = c) WHEN cond, @F(v = c) WHEN cond, and combi-
nations of these using conjunction, disjunction and negation. Furthermore, in
order to make the process efficient, it is based on the sole syntactic analysis of
the events used in the tables, i.e., without resorting to the use of SAT solving to
check whether two events are incompatible or not. We will describe the rules for
constructing the set of incompatible events for @T(x = c), but the reader can
straightforwardly generalize the principles used in this construction to the other
events. Let e be @T(alpha). The events incompatible with e are the following:
(i) @F(alpha) is incompatible with e. (ii) If alpha is of the form x = c, with x
a variable and c a constant, then @T(x = c’) and @T(x = c’) WHEN cond are
incompatible with e, for every constant c’ different from c. (iii) If alpha is of
the form x = c, with x a variable, term or mode class, then then @T(y = c’),
@T(y = c’) WHEN cond, @F(y = c’), @F(y = c’) WHEN cond and CHANGED(y)
are incompatible with e, for every variable, term of mode class y which is not

a predecessor nor a successor of x in the symbol dependency graph, and for
every expression c’. (iv) Conjunctions involving any of the above cases are also
incompatible with e. (v) Disjunctions whose all composing disjuncts correspond
to the above cases are incompatible with e.

These incompatible events are guaranteed not to occur simultaneously with
e. The reason for this in the first and second of the above cases is obvious. The
third is based on the observation that, if x changed its value, then all the symbols
which do not depend on x and of which x does not depend, cannot have changed.
This has to do with the assumption that events start with the change of a single
monitored variable, and the propagation of changes to the symbols depending on
this variable. Notice also that the third of the above rules has as a special case
that, if a monitored variable changes in a transition step, then none of the other
monitored variables changes in the same transition (recall that we assume that
the tabular specification is valid, implying that the symbol dependency graph is
acyclic). The reason for the last two rules are obvious due to the semantics of
conjunction and disjunction, respectively.

Once the set of incompatible events is constructed for e, the process is
straightforward. First, we remove the cases in the tabular specifications in-
volving events incompatible with e. Second, in the tables where disjointness
conditions apply, the alternatives to e are removed. We then generate the “stat-
eChange” formula corresponding to the resulting tables. These formulas can be
much simpler than the original stateChange postcondition. For instance, the
combined mode transition/event table given previously, restricted according to
stateChange(@T(mATTsw=on)) is reduced to the following:

Mode Class = mcStatus
Old mode Events New mode tALTpresel tFPApresel

ALTmode @T(mATTsw=on) ATTmode false false

FPAarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

FPAunarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

The resulting tables might not satisfy some of the wellformedness conditions
(e.g., when we remove a row, we might lose completeness); however, this is not a
concern, since the resulting tables are guaranteed to be equivalent to the original,
if restricted to the occurrence of event e, used to “restrict” the tables.

7 Analyzing Programs over Tabular Specifications

In order to assess our approach, we have conducted some case studies, including
two different versions of the autopilot system, taken from [1, 2], and a tabular
specification of a mini FM radio. In order for the Alloy Analyzer to be able to
handle integer values, we had to consider abstractions of the altitude, etc, using
smaller integers (smaller than 16). Although this is a limitation particularly asso-
ciated with the Alloy Analyzer, this kind of abstraction process is also typical of
other automated analysis techniques, such as model checking. The results of the
experiments, which were carried out using an Intel Core 2 Duo of 2.2Ghz with
2GB of RAM, running the Alloy Analyzer 4.1.8 over Mac OS X, were positive.
In the cases of the somewhat more preliminary specification of the autopilot
system taken from [1] and the specification of the mini FM radio, the Alloy

Analyzer allowed us to find various errors in the specifications, including con-
sistency errors, errors related to misinterpretations of events, and transcription
mistakes. For the better developed specification of the autopilot system in [2],
we carried out experiments involving the execution programs given above. We
compared the straightforward (SG) and based on event compatibility (ECG)
approaches to generating definitions for conditioned atomic actions, with the
latter showing a better performance compared to the former, as expected. We
summarize the analysis times for two of the assertions, namely SimpleCheck and
BackToALTWhenALTpassed, in the table below (times are in seconds). We found
out using the (Dyn)Alloy Analyzer that this last property is, contrary to what we
expected, invalid. The first counterexample obtained had to do with the altitude
changing arbitrarily, and was solved by requiring it to be increased/decreased in
units (which must divide the representation of 1200, used in tNear). The second
counterexample obtained exhibited the following situation: if the airplane gets
into FPAunarmed mode after the desired altitude has been altered, the system
will stop considering that the altitude has been preselected; thus, when mALTsw is
pressed, the event is ignored and the system will continue to be in FPAunarmed
mode. Obviously, this has to do with a misinterpretation of the relationship
between tNear and tALTpresel, which we can correct in the program by requir-
ing in the intermediate test action not only that tNear be false, but also that
tALTpresel is true. SimpleCheck and the corrected BackToALTWhenALTpassed
(also included in the table) properties are valid within the provided bounds,
requiring exhaustive explorations of cases for the corresponding bounds. Also,
BackToALTWhenALTpassed contains two loops, leading to longer runs for the cor-
responding loop unrolls and longer analysis times, as it can be observed in the
table.

Loop unrolls SimpleCheck BackToALTWhenALTpassed BackToALTWhenALTpassed corrected
SG ECG SG ECG SG ECG

5 .563 .602 2.740 1.233 17.442 16.181
10 1.855 1.255 6.253 6.305 106.018 122.003
20 6.184 4.510 84.421 33.518 > 60′ > 60′

40 46.749 21.648 576.402 170.946 > 60′ > 60′

80 422.722 285.784 > 60′ > 60′ > 60′ > 60′

8 Conclusions

We have proposed a formal notation for describing behaviours over tabular spec-
ifications of requirements. This formalism enabled us to describe classes of com-
putations, in the sense of particular combinations of the atomic transitions spec-
ified by tables. As opposed to previous approaches, our approach allows for the
description of a wider class of combinations of the transitions defined by tables,
by means of a rich operational language. This language is based on DynAlloy, an
extension of the Alloy formal specification language that incorporates actions,
both atomic and composite, in order to specify state change in a suitable way.
Our approach comes equipped with some tool support, since, as we showed in
the paper, the DynAlloy Analyzer [4] can be used to validate partial correctness

assertions over tabular specifications via a SAT based mechanism (by indirectly
employing the Alloy Analyzer).

The proposed notation for characterizing particular combinations of the tran-
sitions specified by tables is not restricted to SAT-based analysis. The powerful
tool support associated with existing tabular notations for requirements [7, 3, 8,
13] might benefit from the presented approach. In particular, starting from the
DynAlloy assertions (accompanied by programs) of the kind presented in the
paper, one can generate corresponding specifications in the input languages of
model checkers. Thus, one could apply model checking, in the way that the SCR
toolset applies it, to analyze the behaviours corresponding to these programs.
We are confident that this would contribute to the efficiency of the analysis and
the convenience of the user, by allowing the specifier to concentrate verification
on particular sets of runs (specified by programs over tables) in a declarative
manner. It is our aim and part of our work in progress to apply some of these
analysis techniques with a focus on the runs specified by programs in our nota-
tion, rather than on the global set of behaviours.

References

1. R. Bharadwaj and C. Heitmeyer, Applying the SCR Requirements Specification
Method to Practical Systems: A Case Study, 21st Software Engineering Workshop,
NASA GSFC, 1996.

2. R. Bharadwaj and C. Heitmeyer, Applying the SCR Requirements Method to a Sim-
ple Autopilot, in Proc. of the Fourth NASA Langley Formal Methods Workshop,
1997.

3. T. Bultan and C. Heitmeyer, Analyzing Tabular Requirements Specifications using
Infinite State Model Checking, in Proc. of MEMOCODE 2006, 2006.

4. M. Frias, J. P. Galeotti, C. López Pombo and N. Aguirre, DynAlloy: Upgrading
Alloy with Actions, in Proc. of ICSE ’05, ACM Press, 2005.

5. A. Gargantini and C. Heitmeyer, Using Model Checking to Generate Tests from
Requirements Specifications, in Proc. of ESEC/FSE ’99, LNCS, Springer, 1999.

6. C. Heitmeyer, A. Bull, C. Gasarch and B. Labaw, SCR*: A Toolset for Specifying
and Analyzing Requirements, in Proc. of COMPASS ’95, Gaithersburg, 1995.

7. C. Heitmeyer, R. Jeffords and B. Labaw, Automated consistency checking of re-
quirements specifications, ACM Trans. on Soft. Eng. and Methodology, 5(3), 1996.

8. C. Heitmeyer, M. Archer, R. Bharadwaj and R. Jeffords, Tools for constructing
requirements specifications: the SCR Toolset at the age of nine, Computer Systems:
Science & Engineering, 20(1), 2005.

9. K. Heninger, J. Kallander, D. Parnas and J. Shore, Software Requirements for the
A-7E Aircraft, NLR Memorandum Report 3876, US Naval Research Lab., 1978.

10. D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans. on Soft.
Eng. and Methodology, 11(2), 2002.

11. D. Jackson, Software Abstractions: Logic, Language, and Analysis, MIT Press,
2006.

12. N. Leveson, M. Heimdahl, H. Hildreth and J. Reese, Requirements Specifications
for Process-Control Systems, IEEE Trans. on Software Engineering, 20(9), 1994.

13. S. Owre, J. Rushby and N. Shankar, Analyzing Tabular and State-Transition Spec-
ifications in PVS, in Proc. of TACAS ’97, LNCS, Springer, 1997.

