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Abstract. We present a logic and a prototypical specification language
for specifying and reasoning about component-based systems with sup-
port for dynamic, i.e., run-time, architectural reconfiguration. We present
the logic, an adaptation of an existing one proposed for specifying reac-
tive systems, and some results that demonstrate its suitability for the
specification of reconfigurable systems.
We then explicate how the specification language can be used to specify
a reconfigurable (sub)system via layers defining component templates,
association/connector templates and a layer specifying reconfiguration
operations used to dynamically change the system architecture. We also
illustrate the expressive power and proof capabilities of the logic.

1 Introduction

Due to the complexity and size of current software systems, the notion of struc-
tural architecture of systems, and its relationship to systems analysis and design,
has come to play an important role in today’s software development processes.

Special specification languages, called architecture description languages [10],
were proposed to describe and analyse properties of (sometimes evolving) archi-
tectures. Many of these are able to deal with what is called dynamic reconfigu-
ration, i.e., with the description of operations which may modify the system’s
structure at run time [9]. While architecture description languages (ADLs) pro-
vide constructs for modelling the architecture of a system, they often do not
support reasoning about possible system evolution. In other words, some ADLs
support the definition of components, interconnections and transformation rules
or operations for making architectures change dynamically, but any kind of rea-
soning about behaviours is often performed in some “meta-language”, sometimes
informally. Moreover, the description of architectural elements in ADLs, particu-
larly those related to dynamic reconfiguration, is usually done in an operational
way, as opposed to declaratively [4,6,12].
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Being able to specify and reason about the consequences of using certain
reconfiguration operations in a declarative manner would add abstraction to
what, to our understanding, can be operationally specified by ADLs. We there-
fore propose a temporal logic as a formal basis for the specification of reconfigu-
rable systems. Temporal logic provides a declarative and well-known language
to express behavioural properties, and is currently used in several branches of
software engineering.

We adapt a logic proposed by Manna and Pnueli [7] for the specification of
reactive systems for this purpose. We present the logic and some results that
demonstrate its suitability for the specification of dynamically reconfigurable
systems. A prototypical language based on this logic is defined, where systems
specifications are hierarchically organised around the following notions:

– the notion of components, which are represented by classes that define tem-
plates for these components;

– the notion of connector type, which we call associations, which are then
used to define the potential ways in which components may be organised in
a system;

– the notion of subsystem, the new notion that defines the (coarse grained) unit
of modularity from which reconfigurable systems are built, and which con-
veys the information about what components, what associations and what
reconfiguration operations are used to define the module.

It is not our aim to propose another architecture description language, but to
study an alternative declarative and formal semantics for software architectures.
We prefer to illustrate the capabilites and expressive power of the formalism
by defining a simple front-end to our logic (our prototypical language). This is
simpler than trying to relate, at this stage of our work, our logic to existing
high-level ADLs. In addition, it allows us to show how an interesting specifica-
tion mechanism, hierarchical component organisation, can be achieved using our
proposed formal basis.

2 The Logic

We start by describing the logic we use as a core for the specification of recon-
figurable systems. This is a variant of a logic widely used for the specification
of reactive systems, Manna-Pnueli logic [7,8]. A considerable amount of work
has been done on the Manna-Pnueli logic, including the development of software
tools for supporting the specification of systems [2].

Most of the definitions in this section are adapted from the ones in [7] and
[11]. The use of the logic for expressing properties of systems is standard. The
changes to the logic consist mainly in replacing the use of local variables by the
use of, what we call, flexible function symbols, and by allowing some predicates
to be interpreted in a state-dependent way. We need this in order to be able to
specify reconfiguration.
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2.1 Syntax

An alphabet (sometimes called signature or vocabulary) for this logic consists of:
(i) a set S of sorts, (ii) a set of (S∗ ×S)-indexed flexible function symbols, (iii) a
set of (S∗ ×S)-indexed rigid function symbols, (iv) a set of (S∗)-indexed flexible
predicate symbols, (v) a set of (S∗)-indexed rigid predicate symbols and (vi) a
countable set of S-indexed variables.

Typed terms are constructed from the symbols of the vocabulary as usual.
Formulae are constructed also in the usual way, using the traditional proposi-
tional connectives, equality, the unary temporal operators © and �, the binary
temporal operator U , and quantification over variables. For the definition of the
semantics of the logic we consider ¬ and → as the only propositional connectives,
since the others can be obtained from these.

Terms are used to denote individuals, i.e., elements of the universe of dis-
course, and operations on them. For the specification language (and the appli-
cation domain) we are interested in, we will need, for instance, terms to denote
integers, strings, booleans, etc, and the usual operations on them.

The intended meaning of propositional connectives is the standard. Having
in mind that validity of formulae (in a model) will be subject to a (current)
state, and that states are linearly organised, the intended meanings of ©α and
αUβ are “α is true in the next state” and “α is true (at least) until β becomes
true”, respectively. This is formalised in the next section.

2.2 Semantics

First, let us introduce some definitions, necessary in order to give the semantics
of this logic.

Definition 1. Given an alphabet A, a (semantic) structure M for it is a map-
ping that assigns:

– for each sort S in A, a set SM ,
– for each rigid function symbol f : S1, . . . , Sk → S, a function

fM : S1M
, . . . , SkM

→ SM ,

– for each rigid predicate symbol p : S1, . . . , Sk, a relation

pM ⊆ S1M
× . . . × SkM

.

Given an alphabet A and an A-structure M , a state is a function s that
maps:

– every flexible function symbol f : S1, . . . , Sk → S to a function

fM : S1M
, . . . , SkM

→ SM ,

– every flexible predicate symbol p : S1, . . . , Sk to a relation

pM ⊆ S1M
× . . . × SkM

.
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A trajectory σ in an A-structure M is an infinite list of states. Given a
trajectory σ = s0, s1, . . ., we denote by σ(k) the suffix sk, sk+1, . . ..

An assignment for an A-structure is a mapping that, for every variable V : S,
assigns a value a ∈ SM . Given an assignment A, a variable x : S and a value
d ∈ SM , we denote by Ax/d the assignment that coincides with A for all variables
y �= x, and that maps x to d.

Definition 2. Let A be an alphabet. An interpretation is a triple I = (M, A, σ),
where M is a A-structure, A is an assignment for M , and σ is a trajectory in
M .

Given an interpretation I = (M, A, σ), we denote by Ix/d the interpretation
(M, Ax/d, σ), and by I(k), for a natural number k, the interpretation (M, A, σ(k)).

Given an interpretation I = (M, A, σ) for A, we define I(t), for a A-term t,
as follows:

– for a constant c, I(c) = cM ,
– for a variable v, I(v) = A(v),
– for a rigid 0-ary function symbol f : S, I(f) = fM ,
– for a flexible 0-ary function symbol f : S, I(f) = σ0(f), where σ0 is the first

state in the trajectory σ,
– for a term f(t1, . . . , tk), where f is a rigid function symbol,

I(f(t1, . . . , tk)) = fM (I(t1), . . . , I(tk)),

– for a term f(t1, . . . , tk), where f is a flexible function symbol,

I(f(t1, . . . , tk)) = σ0(f)(I(t1), . . . , I(tk)),

We are ready to define satisfaction of a formula under a given interpretation.

Definition 3. Let A be an alphabet, and I = (M, A, σ) an interpretation. We

define satisfaction of a formula α (over alphabet A) in I, in symbols
I

|= α, as
follows:

–
I

|= t1 = t2 if and only if I(t1) = I(t2),

–
I

|= p(t1, . . . , tk), for a rigid predicate p, if and only if (I(t1), . . . , I(tk)) ∈ pM

–
I

|= p(t1, . . . , tk), for a flexible predicate p, if and only if

(I(t1), . . . , I(tk)) ∈ σ0(p)

–
I

|= ¬β if and only if it is not the case that
I

|= β,

–
I

|= β1 → β2 if and only if
I

|= ¬β1 or
I

|= β2,

–
I

|= ©β if and only if
I(1)

|= β,
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–
I

|= �β if and only if there exists a k ≥ 0 such that
I(k)

|= β,

–
I

|= β1Uβ2 if and only if for some k ≥ 0,
I(k)

|= β2 and for all 0 ≤ i < k, k ≥ 0,
I(i)

|= β1

–
I

|= ∀x ∈ S : β if and only if for all d ∈ SM it is the case that
Ix/d

|= β

Given a set of formulae Φ over an alphabet A, an A-interpretation I is called

a model of Φ if and only if
I

|= φ, for all φ in Φ.

Semantic Consequence. We overload the symbol |=, using it now for defining
a relation between sets of formulae over a signature A. Let A be a signature, Φ
and Ψ sets of formulae over A. Then, we say that Ψ is a semantic consequence
of Φ wrt A, in symbols Φ |=A Ψ , if and only if for every interpretation I wrt A,
if I is a model of Φ then it is also a model of Ψ . We drop the subscript of |=
when it is clear from the context.

Proposition 1. The binary relation |= of semantic consequence between sets of
formulae over a signature A has the following properties:

– Reflexivity: Φ |= Φ
– Cut: if Φ ∪ Φ1 |= Ψ and Φ |= φ, for all φ in Φ1, then Φ |= Ψ
– Monotonicity: if Φ |= Ψ , then Φ ∪ Φ1 |= Ψ ,

for all sets Φ, Φ1, Ψ of formulae over A.

2.3 A Proof Calculus

A sound proof calculus for the logic can be obtained by easily adapting the
axioms for the Manna-Pnueli logic presented in [11]. Inference rules presented
there also preserve validity in our adaptation; however, the definition of valid
substitutability has to be changed, to reflect the fact that, in our adaptation, fle-
xible predicate and function symbols are state-dependent, which has an impact
in the quantification axioms. For the reader aware of [11], these changes consist
only of adapting the definition of predicate globsub(t, x, w) in [11] pp. 165–161,
whose intended meaning is “the replacement of x by t in formula w does not
generate new occurrences of flexible symbols within the scope of temporal ope-
rators and no new ocurrences of bound variables”.

The resulting proof-theoretical consequence relation satisfies reflexivity, cut
and monotonicity.

2.4 Signature and Theory Morphisms

It will be necessary for us to combine different alphabets and formulae in order
to be able to build specifications. For this purpose, we need the logic to satisfy
certain structural properties.
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Definition 4. A signature morphism σ between signatures A and B as a func-
tion that maps:

– each sort in SA to a sort in SB,
– each flexible (resp. rigid) function symbol f : S1, . . . , Sk → S in A to a

flexible (resp. rigid) function symbol σ(f) : σ(S1), . . . , σ(Sk), S′
k+1, . . . , S

′
n →

σ(S) in B,
– each flexible (resp. rigid) predicate symbol p : S1, . . . , Sk in A to flexible

(resp. rigid) predicate symbol σ(p) : σ(S1), . . . , σ(Sk), S′
k+1, . . . , S

′
n in B,

– each variable x : S in A to a variable σ(x) : σ(S) in B.

Note that function and predicate symbols could be mapped to symbols with
a greater arity. This is crucial for the way we deal with reconfiguration.

Having defined mappings of symbols from an alphabet to another, we define
how to translate formulae from one alphabet to another, in a way that is useful
for the purpose of specifying reconfigurable systems.

Definition 5. Let σ : A → B be a signature morphism. The function Grσ :
LA → LB, is defined as follows: Given a formula α, the formula Grσ(α) is the
result of translating the symbols in α using σ, placing fresh variables in the free
spaces resulting from translating function or predicate symbols into others of a
greater arity, and quantifying these universally.

Example 1. Consider the formula �[(∃x ∈ S : p(x)) → q]. If a signature mor-
phism maps S to S′, p : S to p′ : S′, S′′, q to q′ : S′′, and x : S to x : S′. Then,
the formula resulting from the translation is:

∀y ∈ S′′ : [�[(∃x ∈ S′ : p(x, y)) → q(y)]]

Theorem 1. Let σ : A → B be a signature morphism, and Φ and Ψ be sets of
A-formulae. Then,

– Φ |=A Ψ implies Grσ(Φ) |=B Grσ(Ψ).
– Φ �A Ψ implies Grσ(Φ) �B Grσ(Ψ).

These results imply that this logic constitutes a π-institution [5], both con-
sidering semantic and proof-theoretic consequence.

3 The Language

Here we present a prototypical language, in which we make use of the logic
defined in the previous section for specifying some standard elements found
in ADLs. The language is inspired by the language defined in [3], and it is
greatly influenced by ideas from CommUnity [12]. In particular, the definition
of associations is based on the idea of coordination.

As we already indicated, it is not our aim to introduce yet another ADL.
We use the language defined here just to illustrate the expressive power of the
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logic, and the mechanisms applied to represent dynamic reconfiguration. It also
allows us to show how our declarative setting makes possible to provide some
interesting features.

We start by considering the specification of datatypes. A datatype specifica-
tion is simply a theory presentation (i.e., a finite set of formulae) over a signature
ADT with no flexible predicate or function symbols. We assume this specifica-
tion contains the definition of all standard datatypes, such as integers, sequences,
natural numbers, etc. In addition, we assume that a type NAME is defined, with
a sufficiently large set of constants, and no operations. Let us denote this theory
presentation by:

ADT = 〈(SADT , ∅,Funr
ADT , ∅,Predr

ADT ,VarADT ),AxADT 〉

3.1 Class Definitions

The basic building blocks of specifications in our prototypical language are com-
ponents. Component templates are specified by means of class definitions. A
class definition consists simply of: (i) finite sets of attributes and read variables
whose type is a sort defined in ADT excluding NAME, (ii) a finite set of actions,
which can have arguments typed with sorts in ADT excluding NAME. A class
specification is equipped with a set of formulae over the signature:

(SADT − {NAME},Rv ∪ Att ,Funr
ADT ,Act ,Predr

ADT ,VarADT ),

where Rv , Att and Act denote the sets of attributes, read variables and actions
respectively. That is to say, we use read variables and attributes as flexible
function symbols, and actions as flexible predicates, extending the vocabulary
defined in the datatype specification. Axioms in the class specification are not
allowed to use datatype NAME, since it will serve a special purpose later on. The
purpose of the axioms of a class specification is to describe the meaning of the
actions, i.e. their effect on attributes.

Example 2. Consider the class specification in Fig. 1. It is the specification of a
producer; intuitively, the first formula indicates that when action p-init() (meant
to “initialise” the component) is executed, the attribute p-waiting is set to F
(false). The second formula says that in order to be able to perform the produce
operation, the component must be not waiting. The third formula expresses that
produce(x) causes the component to be waiting and the attribute p-current to
be set to x in the next state. Formulae 4, 5 and 6 indicate how action send()
works, calling action dispatch. Finally, formula 7 says that action dispatch can
only be called by send , i.e., it cannot occur spontaneously.

It is worth noting that type item is a basic type; we do not use any particular
features of elements of this type, we just assume is not a class type, i.e. item is
defined in ADT .
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Class Producer
Read Variables: ready-in : boolean
Attributes: p-current : item, p-waiting : boolean
Actions: produce(x : item), send(), dispatch(x : item), p-init()
Axioms

1. �[p-init() → (p-waiting = F)]
2. �[∀x ∈ item : produce(x) → (p-waiting = F)]
3. �[∀x ∈ item : produce(x) → ©((p-waiting = T) ∧ (p-current = x))]
4. �[send() → ((ready-in = T) ∧ (p-waiting = T))]
5. �[send() → dispatch(p-current)]
6. �[send() → ©(p-waiting = F)]
7. �[[∃x ∈ item : dispatch(x)] → send()]

EndofClass

Fig. 1. Class specification Producer

Semantics of Class Definitions. A class specification is interpreted as a
theory presentation, over the signature

(SADT ,Rv ∪ Att ,RFADT ,PADT ∪ Act ,VarADT ).

The axioms of the presentation are obtained by putting together: (i) the axioms
explicitly provided for the class definition, (ii) the axioms of the datatype spe-
cification, (iii) a special (implicit) axiom, called the locality axiom for the spe-
cification, whose general form is:

�





 ∨

g∈Act
∃xg : g(xg)


 ∨


 ∧

a∈Att
©(a) = a







where Act and Att are the sets of actions and attributes of the component,
respectively. The intuitive meaning of the locality axiom, originally proposed in
[3], is: “in every state it is the case that either one of the actions is executed, or
all the attributes remain unchanged”.

Note that read variables are not considered in the locality axiom; this is
because read variables are special attributes, meant to be “entry points” used
by a component to query the state of the environment; therefore, they are not
controlled by the component, which implies they could change, from the point
of view of the component, arbitrarily.

The inclusion of the axioms defining datatypes in the theory of a component
definition justifies the following Theorem:

Theorem 2. Given a class definition C, its corresponding theory is an extension
of the theory of the datatype specification ADT .
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3.2 Associations

Once classes have been defined, ways of making components interact can be
defined. This is done by means of what we call associations. Associations are
simply templates of connectors, in the sense of [1]. The syntax is very simple:
An association consists of:

– a name for the association (distinct from names of other linguistic elements
already defined),

– a set of participants, typed with class names,
– a set of connections, which are expressions of the form:

x.α � y.β

where x and y are participants of classes A and B respectively, and α and
β are either:

• formulae in the languages of A and B respectively, or
• terms of the same sort, in the languages of A and B respectively.

The intended meaning of an association definition is that, whenever certain
instances are related using an association instance, then they are forced to syn-
chronise as the connections indicate.

The actual interpretation of associations, as special formulae, takes place at
the next level of the specification, the subsystems.

Class Consumer
Read Variables: ready-ext : boolean
Attributes: c-current : item, c-waiting : boolean
Actions: consume(x : item), extract(x : item), c-init()
Axioms

1. �[c-init() → (c-waiting = T)]
2. �[∀x ∈ item : extract(x) → ((c-waiting = T) ∧ (ready-ext = T))]
3. �[∀x ∈ item : extract(x) → ©((c-waiting = F) ∧ (c-current = x))]
4. �[∀x ∈ item : consume(x) → ©(c-waiting = T)]
5. �[∀x ∈ item : consume(x) → ((c-current = x) ∧ (c-waiting = F))]
6. �[c-waiting = F → �(consume(c-current))]

EndofClass

Fig. 2. Class specification Consumer

Example 3. Consider the class specifications in Figs. 1 and 2; we define the
association in Fig. 3 with the intention of making producers and consumers
interact. The intuitive meaning of the connections is that, whenever a producer
p is connected to a consumer c by means of a connector Prods-for , then:
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– the read variable ready-in in p is identified with the attribute c-waiting of c
(and viceversa),

– the attribute p-waiting of p is identified with the read variable ready-ext of
c (and viceversa),

– whenever dispatch(x) occurs in p, extract(x) also occurs (and viceversa).

Note the last axiom of the Consumer specification. It expresses a liveness
condition on consumers. This shows the expressiveness of the logic, but it also
shows how “low-level” the language is in its present status, since this kind of
properties can be directly enforced as axioms1.

Association Prods-for
Participants: p : Producer , c : Consumer
Connections:

p.ready-in � c.c-waiting
p.p-waiting � c.ready-ext
p.dispatch(x) � c.extract(x)

EndofAssociation

Fig. 3. Association specification Prods-for

3.3 Subsystems

This is the upper layer of the language. Once class and association specifications
are given, a subsystem can be declared. Intuitively, we can describe a subsystem
as a complex component, built out of instances of classes (basic components)
inter-related by means of connectors, i.e., instances of associations. The key
capability of a subsystem, what motivated the definition of the logic, is that it
can have operations that dynamically change its architectural state.

A subsystem Sub then has a finite set of actions, whose arguments must be
of types defined in ADT , now including NAME. Also, as for class definitions,
we use logical axioms for specifying the behaviour of a subsystem. The alphabet
ASub over which the subsystem formulae are expressed is composed of:
1 Liveness properties are an example of properties that might not be preserved when a

component becomes part of certain systems. In our language, these properties can be
expressed, and because of the semantics for subsystems, they will be “preserved” in
any subsystem. When, because of some reason, such a property is not preserved, this
will be reflected as an inconsistency in the theory of the corresponding subsystem.
Although we agree this is certainly not the best way of “catching” the anomaly,
we believe this matter can be solved by defining a more suitable “front-end” to the
logic. However, we choose at the moment to illustrate the expressive power of the
logic, and not to be concerned about the specification language definition, something
orthogonal to the main ideas of our work.
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– the sorts defined in ADT ,
– the rigid function and predicate symbols defined in ADT ,
– the flexible function and predicate symbols resulting from class definitions,

adding to all of them an extra parameter of sort NAME,
– a flexible predicate symbol A : NAME for each class definition A,
– a flexible predicate symbol R : NAME, . . . ,NAME︸ ︷︷ ︸

k times

for each association defi-

nition R with k participants
– a flexible predicate symbol a : S1, . . . , Sk for each subsystem action of type

a(x1 : S1, . . . , xk : Sk).

Constants of type NAME represent names of instances. Predicate A : NAME,
for a class definition A, is meant to characterise the names of live instances of
type A in each state. Predicate R for an association R is used to denote the
instances of connectors in each state. Clearly, there exists a signature morphism
σA,Sub from the signature of every class definition A into the signature described
above.

Example 4. Consider the subsystem specification in Fig. 4. It is a description of
a complex component, built out of instances of producers and consumers inter-
related by connectors of the kind defined by Prods-for . The subsystem consists of
four operations: (i) init(), which is specified by axioms 1-6 (it is meant to be an
initialisation operation), (ii) change(y), specified by axioms 7-10, makes the only
producer of the subsystem, P , to produce for consumer y, (iii) create(y), which
creates a new consumer, and (iv) del(y), which deletes an existing consumer.
When the sort of a variable is not explicitly indicated in a quantification of a
formula, we consider it to be NAME.

Operation init() creates a producer, P , and a consumer, C. It can be called
only once, as specified by axiom 5. Operation change is the only one that can
change the interconnections, besides the initialisation.

Note that the extra parameter of flexible symbols from component definitions
is denoted using the “dot” notation from object orientation, making it more
readable. As can be seen, this causes operations and attributes declared in classes
to be “relativised” to a corresponding instance name. It is clear from the example
how the language of the components is incorporated into the language of a
subsystem. The extra parameter added to flexible symbols indicates to which
instance the action or attribute corresponds to. For example, if we see axiom 4,
it indicates that init() in the subsystem “calls” the initialisation operations of
P and C, now denoted by P.p-init() and C.c-init(), respectively.

Semantics of Subsystems. As for basic components, we interpret subsystem
specifications as theory presentations. A subsystem Sub describes a theory pre-
sentation over signature ASub , whose axioms are:

– The formulae explicitly provided in the subsystem specification,
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Subsystem Multiple Consumers
Operations: init(), change(x : NAME), create(x : NAME), del(x : NAME)
Axioms

1. �[init() → ©(Producer(P ) ∧ Consumer(C) ∧ Prods-for(P, C))]
2. �[init() → ©(∀x : Producer(x) → x = P )]
3. �[init() → ©(∀y : Consumer(y) → y = C)]
4. �[init() → ©(P.p-init() ∧ C.c-init())]
5. �[init() → ©(�(¬init()))]
6. �[¬init() → ∀x : (Producer(x) ↔ ©(Producer(x)))]
7. �[∀y : change(y) → (¬Prods-for(P, y)) ∧ ©(Prods-for(P, y))]
8. �[∀y : change(y) → [∃y′ : Prods-for(P, y′) → ¬ © (Prods-for(P, y′))]]
9. �[∀y : change(y) → P.p-waiting = F]

10. �[∀y : ¬change(y) → (Prods-for(P, y) ↔ ©(Prods-for(P, y)))]
11. �[∀y : create(y) → (¬Consumer(y)) ∧ ©(Consumer(y))]
12. �[∀y : [(¬Consumer(y)) ∧ ©(Consumer(y))] → create(y) ∨ init()]
13. �[∀y : create(y) → ©(y.c-init())]
14. �[∀y : del(y) → (Consumer(y)) ∧ ©(¬Consumer(y))]
15. �[∀y : [(Consumer(y)) ∧ ©(¬Consumer(y))] → del(y)]

EndofSubsystem

Fig. 4. A subsystem specification

– The formulae corresponding to every class definition A, appropriately trans-
lated into the language of ASub by GrσA,Sub

(see Example 1, showing how a
formula similar to Axiom 7 in Producer is translated to be incorporated in
a subsystem),

– Implicit formulae characterising association definitions,
– Implicit formulae characterising general properties of subsystems.

We have chosen to have mutually exclusive sets of symbols for the component
definitions (except, of course, for the symbols corresponding to the datatypes
specification) to simplify the presentation.

Characterisation of Associations. We characterise association definitions by me-
ans of formulae that are incorporated in the theory of a subsystem. These for-
mulae indicate the “type” of the arguments of the connectors, and how they
communicate, according to the connections defined in the association. For our
example, the formulae are:

�[∀x, y : Prods-for(x, y) → Producer(x) ∧ Consumer(y)]
�[∀x, y : Prods-for(x, y) → x.ready-in = y.c-waiting ]
�[∀x, y : Prods-for(x, y) → x.p-waiting = y.ready-ext ]
�[∀x, y : Prods-for(x, y) → ∀i : item : x.dispatch(i) ↔ y.extract(i)]

General Properties of Subsystems. Besides the formulae characterising associa-
tions, there are other general properties that are specified by means of implicit
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formulae in a subsystem. These formulae indicate, for example, that nothing
can be at the same time an instance of two different classes, that operations of
“dead” instances cannot take place, that a subsystem may evolve only by means
of its own operations (locality of a subsystem), etc. We list here a few to show
how they are expressed:

�[∀x : ∀i ∈ item : x.dispatch(i) → Producer(x)]
�[∀x : ¬(Producer(x) ∧ Consumer(x))]

The justification for the need of flexible predicates is their use to denote ac-
tion occurrence, which should clearly be state-dependent. It is not sufficient to
have flexible propositional variables, since we want to be able to deal with pa-
rameterised actions (for instance, note that when building subsystems, actions
from basic components need to be relativised to instance names, which requires
the consideration of a new parameter of type NAME for the corresponding predi-
cate). For the case of function symbols, it is not sufficient to have local variables
as in [7] because attributes of classes (program variables) have to be “relativised”
to instance names when considered in a subsystem; therefore, flexible 0-ary fun-
ctions (local variables) generated by a class A have to be represented by flexible
unary functions in an including subsystem Sub.

The way the theory of a subsystem is constructed, importing axioms from
the class specifications, and the results in Theorem 1 justify the following:

Theorem 3. The theory corresponding to a subsystem definition Sub is an ex-
tension of the translation GrσA,Sub

(ΦA) of the theory ΦA of every class definition
A.

Some Properties of the Subsystem. Here we provide some properties of the
subsystem of Fig. 4, illustrating the expressive power of the logic. We also include
a sketch of the proof of one of these properties. It is worth mentioning that these
properties can be proved using our adapted version of the proof calculus for the
Manna-Pnueli logic, although we cannot include the complete detailed proofs
due to space restrictions.

Property 1: “After the subsystem has been initialised, P is always producing
for some consumer”. We can express this as follows:

�[init() → ©(�(∃y : Prods-for(P, y)))]

Proof: We can prove this property by using one of the proof methods for in-
variance described in [8]. First we prove that init() → ©(∃y : Prods-for(P, y)),
which follows from Axiom 1 in the Subsystem. Then we prove that

init() → ©(∃y : Prods-for(P, y) → ©(∃y′ : Prods-for(P, y′)))

i.e., that after init(), the property is preserved by all the actions. This follows
from the fact that action change is the only one that can “disconnect” consu-
mers (Axiom 10 in the subsystem), and when it does, it connects P to another
consumer (Axiom 7 in the subsystem), reestablishing the property.
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Property 2: “After the subsystem has been initialised, if P has produced an
item, the connected consumer(s) will remain to be connected to it until the item
is dispatched”. We express this in the following way:

�[init() → ©(�(∃i ∈ item : P.produce(i) →
∀y : Prods-for(P, y) → Prods-for(P, y) U P.dispatch(i)))]

This property involves the combination of axioms explicitly provided in the
subsystem (such as Axiom 9) with properties of the components (such as Axiom
6 in the producer specification).

Property 3: “After the subsystem has been initialised, P is the only instance
of Producer”. This is expressed as follows:

�[init() → ©(�(∀x : Producer(x) ↔ x = P ))].

4 Related Work

Our motivation is to formally reason about behavioural properties of dynami-
cally reconfigurable systems. Our work is then related to approaches to the
specification of software architectures, such as the work on various ADLs [1,4,9,
10].

This work is specially related to approaches to formal specificatiton of dyna-
mic reconfiguration, such as those based on graph grammars [12] and chemical
abstract machines [6]. As we indicated before, these approaches propose ope-
rational languages for specifying reconfigurable systems. Our logic provides a
declarative, and therefore more abstract, framework for characterising reconfi-
gurable systems. Moreover, reasoning can be performed within the formalism,
as opposed to doing so in some meta-language, as in the mentioned alternatives.

There are many similarities between the work presented here and the work
on CommUnity [12], since both are based on the logical and semantic foundati-
ons of [3]. In particular, the idea of coordination as a mechanism for achieving
communication is used in our prototypical specification language for specifying
associations.

The logic we presented is an adaptation of the Manna-Pnueli logic [7,8]. Un-
fortunately, we are not able to use the original logic for the purpose of specifying
reconfigurable systems, due to a restriction on the type of flexible symbols al-
lowed, i.e., only flexible constants/variables are allowed. Our adaptation of the
logic overcomes this difficulty, but means that the extensive work on the Manna-
Pnueli logic not fully applicable to our formalism. However, most of the work
is relevant to our proposed adaptation. For instance, the original logic coincides
with our adaptation in the fragment used for specifying datatypes and basic
components; therefore, the tool support for the Manna-Pnueli logic can be used
as is for assisting the verification of these parts of a specification. We believe
it is not difficult to adapt the existing tool support to cope with subsystems,
which require flexible function and predicate symbols. The extension also requi-
res STeP [2] to be able to deal with structured theories and the exporting of
theorems from a component to a subsystem.



A Logical Basis for the Specification 51

5 Conclusions

We presented a logic suitable for specifying and reasoning about component-
based systems with support for run-time architectural reconfiguration. The sui-
tability of the logic is illustrated by the definition of a prototypical specification
language on top of it, which shows the expressive power of the logic. The way in
which associations are represented in the language allows it to express properties
concerning the architecture of the system in a declarative way. Hence, operations
that may change the topology of the system can be easily specified.

We think our work complements the ones regarding ADLs such as [12,1,6],
by providing a uniform language to state and prove properties, that could then
be related to specifications in a number of different ADLs.

Among the future work related to the logic presented here, we are studying
ways of defining suitable inheritance relationships between components, which
might allow us to have polymorphic reconfiguration operations in subsystems.
We also want to study how specifications in some ADLs can be interpreted in
our logic, to provide them with a formal logical semantics and proof capabilities.
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