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Abstract. Justification Logic (JL) is a refinement of modal logic that
has recently been proposed for explaining well-known paradoxes arising
in the formalization of Epistemic Logic. Assertions of knowledge and be-
lief are accompanied by justifications: the formula [[t]]A states that t is
“reason” for knowing/believing A. We study the computational inter-
pretation of JL via the Curry-de Bruijn-Howard isomorphism in which
the modality [[t]]A is interpreted as: t is a type derivation justifying the
validity of A. The resulting lambda calculus is such that its terms are
aware of the reduction sequence that gave rise to them. This serves as a
basis for understanding systems, many of which belong to the security
domain, in which computation is history-aware.

1 Introduction

This paper is concerned with the computational interpretation of Justification
Logic [Art95,Art01,Art08] (JL). JL is a refinement of modal logic that has re-
cently been proposed for explaining well-known paradoxes arising in the formal-
ization of Epistemic Logic. Assertions of knowledge and belief are accompanied
by justifications: the modality [[t]]A states that t is “reason” for knowing/believing
A. The starting point of this work is the observation that if t is understood as a
typing derivation of a term of type A, then a term of type [[t]]A should incorporate
some encoding of t. Suppose this typing derivation is seen as a logical derivation
in natural deduction. Then any normalisation steps applied to it would produce
a new typing derivation for A and, moreover, its relation to t would have to be
made explicit in order for derivations to be closed under normalisation (in type
systems parlance: for Subject Reduction (SR) to hold). This suggests that the
computational interpretation of JL is a lambda calculus, which we dub λh, that
records its computation history. This work is an attempt at making these ideas
precise.

We begin with some examples supplying informal explanations whenever
appropriate (rigorous definitions must wait until the necessary background has
been introduced). The expression !α1,...,αn

e M is called an audited (computation)
unit, M being the body, e the history or trail of computation producing M and
αi, i ∈ 1..n, the trail variables that are used for consulting the history. Each

? Work partially supported by ANPCyT PICT 2006-01216 and ITBA.



reduction step that takes place in M updates e accordingly (except if this step
is inside a nested audited unit). Consider the unit !αRfl(s)(λa : N.a) b. Its body
consists of the identity function over the type N of the natural numbers applied
to a variable b; Rfl(s) is the empty trail with s being the encoding of a type
derivation of (λa : N.a) b; the trail variable α plays no role in this example.
This term reduces to !αTrn(β(aN.a,b),Rfl(s))b. The new trail Trn(β(aN.a, b),Rfl(s))

indicates that a β step took place at the root; the Trn trail constructor indicates
composition of trails.

Inspection of trails is achieved by means of trail variables. These variables
are affine (i.e. at most one permitted use) since each trail lookup may produce
a different result. Evaluation of trail variables inside an audited unit consists
in first looking up the trail and then immediately traversing it replacing each
constructor of the trail with a term of the appropriate type3. This mapping from
trail constructors to terms is called a trail replacement. All occurrences of trail
variables are thus written αθ where α is a trail variable and θ a trail replacement.
For example, suppose after a number of computation steps we attain the term
!αe if αθ > 5 then 1 else 2, where e denotes the current history and n a numeral.
Given the following definition of θ, αθ counts the number of β steps that have
taken place (expressions such as Tlk below are other trail constructors and may
be ignored for the moment):

θ(Rfl) = θ(Tlk)
def
= 0 θ(Rpl)

def
= λa : N.a1 + . . .+ a10

θ(Sym) = θ(Abs)
def
= λa : N.a θ(β2)

def
= 0

θ(Trn) = θ(App) = θ(Let)
def
= λa : N.λb : N.a+ b θ(β)

def
= 1

Thus, the term decides either to compute 1 or 2 depending on whether the
number of β steps that have taken place is greater than 5 or not. An interesting
feature of λh is how it manages persistence of trails. It is achieved by means
of the letu = M in N construct (M is the argument and N the body of the
let) which eliminates audited units and operates as exemplified below. Let P
be λa : N.if αθ > 5 then a else 2 and consider the following term where the
expression 〈u; {α/γ}〉 consists of an audited unit variable u and a trail variable
renaming {α/γ}:

letu =!αe1P in !γRfl(t)〈u; {α/γ}〉 1

In a β2 reduction step, first u is replaced by the body P of the audited unit !αe1P
together with its history e1, then all occurrences of trail variables α are replaced
by γ, and finally e1 is merged with the trail of the new host unit:

!γTrn(e2,Rfl(t′)) (λa : N.if γθ > 5 then a else 2) 1

Trail e2 is Trn(β2(u.r1, α.r2),App(e′1,Rfl(s))). Here u.r1 and α.r2 are encodings
of typing derivations for the body and argument of the let resp., e′1 is e1 updated
with {α/γ}, s encodes a type derivation for 1 and t′ is t where all occurrences of
u have been replaced by the α.r2. The β2 trail construct reflects a reduction of a

3 In the same way as one recurs over lists using fold in functional programming,
replacing nil and cons by appropriate terms.



let redex at the root. Note how, (1) the history of the unit !αe1P has propagated
to the new host unit (as the trail App(e′1,Rfl(s)) which reflects that activity
described by e′1 has taken place in the left argument of the application (λa :
N.if γθ > 5 then a else 2) 1), and (2) how the trail variable α has been replaced
by γ so that all subsequent trail lookups now correctly refer to the trail of the
new host unit. All these operations arise from an analysis of the normalisation
of JL derivations.

The contributions of this paper are a proof theoretical analysis of a λ-calculus
which produces a trail of its execution. This builds on ideas stemming from
work on JL, judgemental analysis of modal logic [ML96,DP96,DP01b,DP01a]
and Contextual Modal Type Theory [NPP08]. More precisely, we argue how a
fragment of JL whose notion of validity is relative to a context of affine variables
of justification equivalence may be seen, via the Curry-de Bruijn-Howard inter-
pretation, as a type system for a calculus that records its computation history.

Related work. S. Artemov introduced JL in [Art95,Art01,Art08]. For nat-
ural deduction and sequent calculus presentations consult [Art01,Bre01,AB07].
Computational interpretation of proofs in JL are studied in [AA01,AB07,BF09],
however none of these address audit trails. From a type theoretic perspective we
should mention the theory of dependent types [Bar92] where types may depend
on terms, in much the same way that a type [[s]]A depends on the proof term s.
However, dependent type theory lacks a notion of internalisation of derivations
as is available in JL.

Structure of the paper. Sec. 2 introduces JL•, an affine fragment of JL.
Sec. 3 studies normalisation in this system. We then introduce a term assignment
for this logic in order to obtain a lambda calculus with computation history trails.
This calculus is endowed with a call-by-value operational semantics and type
safety of this semantics w.r.t. the type system is proved. Sec. 5 addresses strong
normalisation. Finally, we conclude and suggest further avenues for research.

2 The Logic

JL (formerly, the Logic of Proofs) is a modal logic of provability which has a
sound and complete arithmetical semantics. This section introduces a natural
deduction presentation for a fragment4 of JL. The inference schemes we shall
define give meaning to hypothetical judgements with explicit evidence ∆;Γ ;Σ `
A | s whose intended reading is: “s is evidence that A is true under validity
hypothesis ∆, truth hypothesis Γ and equivalence hypothesis Σ. Hypothesis in Γ
are the standard term variables a, b, . . ., those in ∆ are audited unit variables
u, v, . . ., and those in Σ are trail variables α, β, . . .. These last hypothesis are
often referred to as equivalence hypothesis since the type of a trail variable is a
proposition that states the equivalence of two typing derivations. The syntax of
each component of the judgement is as follows:

4 Intuitionistic propositional JL without the “plus” polynomial proof constructor.



a : A ∈ Γ
oVar

∆;Γ ;Σ ` A | a

∆;Γ, a : A;Σ ` B | s
⊃ I

∆;Γ ;Σ ` A ⊃ B | λa : A.s

∆;Γ1;Σ1 ` A ⊃ B | s
∆;Γ2;Σ2 ` A | t ⊃ E

∆;Γ1,2;Σ1,2 ` B | s · t

u : A[Σ] ∈ ∆ Σσ ⊆ Σ′
mVar

∆;Γ ;Σ′ ` A | 〈u;σ〉

∆; ·;Σ ` A | s
∆; ·;Σ ` Eq(A, s, t) | e

2I
∆;Γ ;Σ′ ` [[Σ.t]]A | Σ.t

∆;Γ1;Σ1 ` [[Σ.r]]A | s
∆, u : A[Σ];Γ2;Σ2 ` C | t

2E
∆;Γ1,2;Σ1,2 ` CuΣ.r | letu : A[Σ] = s in t

α : Eq(A) ∈ Σ ∆; ·; · ` T B | θw
Tlk

∆;Γ ;Σ ` B | αθw
∆;Γ ;Σ ` A | s ∆;Γ ;Σ ` Eq(A, s, t) | e

Eq
∆;Γ ;Σ ` A | t

Fig. 1. Explanation for Hypothetical Judgements with Explicit Evidence

Propositions A ::= P |A ⊃ A | [[Σ.s]]A
Validity ctxt ∆ ::= · |∆,u : A[Σ]

Truth ctxt Γ ::= · |Γ, a : A
Equiv. ctxt Σ ::= · |Σ,α : Eq(A)

Renaming σ ::= {α1/β1, . . . , αn/βn}
Evidence s ::= a |λa : A.s | s · s

| 〈u;σ〉 |Σ.s
| letu : A[Σ] = s in s |αθw

Both Γ and Σ are affine hypothesis whereas those in ∆ are intuitionistic.
Contexts are considered multisets; “·” denotes the empty context. In ∆;Γ ;Σ
we assume all variables to be fresh. Variables in Σ are assigned a type of the
form Eq(A)5. A proposition is either a propositional variable P , an implication
A ⊃ B or a modality [[Σ.s]]A. In [[Σ.s]]A, “Σ.” binds all occurrences of trail
variables in s and hence may be renamed at will. We refer to an encoding of a
type derivation as evidence. Evidence bear witness to proofs of propositions, they
encode each possible scheme that may be applied: truth hypothesis, abstraction,
audited computation unit variable, audited computation unit introduction and
elimination, and trail look-up. The expression θw (‘w’ is for ‘witness’) will be
explained shortly. We write σ for trail variable (bijective) renamings. Free truth
variables of s (fvT(s)), free validity variables of s (fvV(s)) and free trail variables
of s (fvTrl(s)) are defined as expected. We write sat for the substitution of all free
occurrences of a in s by t. Substitution of validity variables is denoted suΣ.t. Its
definition is standard except perhaps for the case 〈u;σ〉uΣ.s: here all occurrences
of Σ in s are renamed via σ.

The meaning of hypothetical judgements with explicit evidence is given in
Fig. 1 and determine the JL• system. The axiom scheme oVar states that judge-
ment “∆;Γ ;Σ ` A | a” is evident in itself: if we assume a is evidence that

5 The type Eq(A) in an assignment α : Eq(A) may informally be understood as
∃x, y.Eq(A, x, y) (where x, y stand for arbitrary type derivations of propositions of
type A) since α stands for a proof of equivalence of two type derivations of proposi-
tions of type A about which nothing more may be assumed. These type derivations
are hidden since trail lookup may take place at any time.



π1

∆; a : A ` B | s
⊃ I

∆; · ` A ⊃ B | λa : A.s

π2

∆; · ` A | t
⊃ E

∆; · ` B | (λa : A.s) · t
2I

∆;Γ ` [[(λa : A.s) · t]]B |!(λa : A.s) · t

π3

∆; · ` B | sat
2I

∆;Γ ` [[(λa : A.s) · t]]B
!(λa : A.s) · t |

Fig. 2. Failure of subject reduction for naive modal introduction scheme

proposition A is true, then we may immediately conclude that A is true with
evidence a. The introduction scheme for the modality internalises meta-level ev-
idence into the object logic. It arises from addressing the shortcomings of the
more naive scheme (in which Σ is ignored) for introducing this modality:

∆; · ` A | s
2I

∆;Γ ` [[s]]A |!s

The resulting system is not closed under substitution of derivations. Eg. con-
traction of the derivation in Fig. 2 (left) would produce the invalid (since evidence
sat and (λa : A.s) · t do not coincide) derivation of Fig. 2 (right) where π3 is ob-
tained from π1,2 and an appropriate substitution principle. Subject Reduction
may be regained, however, by introducing a judgement stating equivalence of
evidence ∆;Γ ;Σ ` Eq(A, s, t) | e, e is dubbed equivalence witness, together with
the scheme Eq (Fig. 1). A consequence of this is that normalisation gives rise to
instances of Eq appearing in any part of the derivation complicating metathe-
oretic reasoning. However, since this scheme can be permuted past all other
schemes except for the introduction of the modality (as may easily be verified),
this suggests postulating a hypothesis of evidence equivalence in the introduction
scheme for the modality and results in the current scheme 2I (Fig. 1). Normal-
isation steps performed in the derivation ending in the leftmost hypothesis are
encoded by equivalence witness e. Finally, 2E allows the discharging of validity
hypothesis: to discharge the validity hypothesis v : A[Σ], a proof of the validity
of A under derivation equivalence assumptions Σ is required. In our system, this
requires proving that [[Σ.r]]A is true with some evidence s.

A sample of the schemes defining evidence equivalence are given in Fig. 3.
There are four evidence equivalence axioms (EqRefl, Eqβ, Eqβ2 and EqTlk; the
third is not exhibited) and six inference schemes (the rest). The axioms are
used for recording principle contractions (Sec. 3) at the root of a term and
schemes EqAbs, EqApp, EqLet and EqRpl (only second exhibited) enable the
same recording but under each of the term constructors. In accordance with the
abovementioned discussion on permutation of Eq past other schemes, there is
no congruence scheme for the modality. Equivalence witness may be one of the
following where Rpl(e1, . . . , e10) is usually abbreviated Rpl(e):

e ::= Rfl(s) |Sym(e) |Trn(e, e) |β(aA.s, s) | β2(uA[Σ].s, Σ.s)

| Trl(θw, α) |Abs(aA.e) | App(e, e) | Let(uA[Σ].e, e) |Rpl(e1, . . . , e10)



∆;Γ ;Σ ` A | s
EqRefl

∆;Γ ;Σ ` Eq(A, s, s) | Rfl(s)

∆;Γ ;Σ ` Eq(A, s1, s2) | e1
∆;Γ ;Σ ` Eq(A, s2, s3) | e2

EqTrans
∆;Γ ;Σ ` Eq(A, s1, s3) | Trn(e1, e2)

∆;Γ1, a : A;Σ1 ` B | s
∆;Γ2;Σ2 ` A | t

Eqβ
∆;Γ1,2;Σ1,2 ` Eq(B, sat , (λa : A.s) · t) | β(aA.s, t)

∆; ·;Σ1 ` Eq(A, s, t) | e ∆; ·; · ` T B | θw α : Eq(A) ∈ Σ2

EqTlk
∆;Γ ;Σ2 ` Eq(B, eθw, αθw) | Trl(θw, α)

∆;Γ1;Σ1 ` Eq(A ⊃ B, s1, s2) | e1
∆;Γ2;Σ2 ` Eq(A, t1, t2) | e2

EqApp
∆;Γ1,2;Σ1,2 ` Eq(B, s1 · t1, s2 · t2) | App(e1, e2)

Fig. 3. Sample schemes defining evidence equivalence judgement

Regarding trail look-up (Tlk in Fig. 1) recall from the introduction that we
append each reference to a trail variable with a trail replacement. Therefore,
the evidence for look-ups has to be accompanied by proofs of propositions cor-
responding to each term that is to replace equivalence witness constructors.
The evidence for each of these proofs is then encoded as θw. This require-
ment is reflected by the hypothesis ∆; ·; · ` T B | θw which is a shorthand for
∆; ·; · ` T B(c) | θw(c), for each c in the set of equivalence witness constructors
{Rfl ,Sym,Trn, β, β2,Tlk ,Abs,App,Let ,Rpl}, where T B(c) is the type of term
that replaces the trail constructor c. These types are defined as one might expect

(for example, T B(Trn)
def
= B ⊃ B ⊃ B and T B(β)

def
= B).

Some basic meta-theoretic results about JL• are presented next. The judge-
ments in the statement of these results are decorated with terms (eg. M) which
may safely be ignored for the time being (they are introduced in Sec. 4).

Lemma 1 (Weakening).

1. If ∆;Γ ;Σ ` M : A | s is derivable, then so is ∆′;Γ ′;Σ′ ` M : A | s, where
∆ ⊆ ∆′, Γ ⊆ Γ ′ and Σ ⊆ Σ′.

2. If ∆;Γ ;Σ ` Eq(A, s, t) | e is derivable, then so is ∆′;Γ ′;Σ′ ` Eq(A, s, t) | e,
where ∆ ⊆ ∆′, Γ ⊆ Γ ′ and Σ ⊆ Σ′.

We abbreviate Γ1, Γ2 with Γ1,2. If Γ = Γ1, a : A,Γ3, we write Γ aΓ2
for Γ1,2,3.

Lemma 2 (Subst. Principle for Truth Hypothesis). Suppose ∆;Γ2;Σ2 `
N : A | t is derivable and a : A ∈ Γ1.

1. If ∆;Γ1;Σ1 `M : B | s, then ∆;Γ1
a
Γ2

;Σ1,2 `Ma
N,t : B | sat .

2. If ∆;Γ1;Σ1 ` Eq(B, s1, s2) | e, then ∆;Γ1
a
Γ2

;Σ1,2 ` Eq(B, (s1)
a
t , (s2)

a
t ) | eat .



In the substitution principle for validity variables, note that substitution of
u : A[Σ1] requires not only a derivation of ∆1,2; ·;Σ1 ` M : A | s, but also
its normalisation history ∆1,2; ·;Σ1 ` Eq(A, s, t) | e1 (cf. substitution of validity
variables, in particular the clause for 〈u;σ〉, in Sec. 4).

Lemma 3 (Subst. Principle for Validity Hypothesis). Suppose judge-
ments ∆1,2; ·;Σ1 ` M : A | s and ∆1,2; ·;Σ1 ` Eq(A, s, t) | e1 are derivable.

Let ∆
def
= ∆1, u : A[Σ1], ∆2. Then:

1. If ∆;Γ ;Σ2 ` N : C | r, then ∆1,2;Γ ;Σ2 ` Nu
Σ1.(M,t,e1)

: CuΣ1.t
| ruΣ1.t

.

2. If ∆;Γ ;Σ2 ` Eq(C, s1, s2) | e2, then ∆1,2;Γ ;Σ2 ` Eq(CuΣ1.t
, s1

u
Σ1.t

, s2
u
Σ1.t

) |
e2
u
Σ1.t

.

The last ingredient we require before discussing normalisation is the following
lemma which is used for computing the results of trail look-up. The expression eθ
produces a term by replacing each equivalence witness constructor c in e by its

correesponding term θ(c). For example, β(aA.r, t)θ
def
= θ(β) and Trn(e1, e2)θ

def
=

θ(Trn) e1θ e2θ. In contrast, eθw produces evidence by replacing each equivalence
witness constructor c in e with θw(c).

Lemma 4. ∆; ·; · ` T B | θw and ∆; ·;Σ2 ` Eq(A, s, t) | e implies ∆; ·; · ` eθ :
B | eθw.

3 Normalisation

Normalisation equates derivations and since JL• internalises its own proofs,
normalisation steps must explicitly relate evidence in order for SR to hold. Nor-
malisation is modeled as a two step process. First a principle contraction is
applied, then a series of permutation conversions follow. Principle contractions
introduce explicit witnesses of derivation equivalence. Permutation conversions
standardize derivations by moving these witnesses to the innermost 2 introduc-
tion scheme. There are three principal contractions (β, β2 and Tlk-contraction),
the first two of which rely on the substitution principles discussed earlier. The
first replaces a derivation of the form:

π1

∆;Γ1, a : A;Σ1 ` B | s
⊃ I

∆;Γ1;Σ1 ` A ⊃ B | λa : A.s

π2

∆;Γ2;Σ2 ` A | t
⊃ E

∆;Γ1,2;Σ1,2 ` B | (λa : A.s) · t

by the following, where π3 is a derivation of ∆;Γ1,2;Σ1,2 ` B | sat resulting from
π1 and π2 and the Substitution Principle for Truth Hypothesis:

π3

π1

∆;Γ1, a : A;Σ1 ` B | s

π2

∆;Γ2;Σ2 ` A | t

∆;Γ1,2;Σ1,2 ` Eq(B, sat , (λa : A.s) · t) | β(aA.s, t)
Eq

∆;Γ1,2;Σ1,2 ` B | (λa : A.s) · t



The second contraction replaces:

∆; ·;Σ ` A | s
∆; ·;Σ ` Eq(A, s, t) | e1

2I
∆;Γ1;Σ1 ` [[Σ.t]]A | Σ.t ∆, u : A[Σ];Γ2;Σ2 ` C | r

2E
∆;Γ1,2;Σ1,2 ` CuΣ.t | letu : A[Σ] = Σ.t in r

with the following derivation where π is a derivation of ∆;Γ1,2;Σ1,2 ` CuΣ.t | tuΣ.t
resulting from the Substitution Principle for Validity Hypothesis followed by
weakening (of Γ1 and Σ1) and e2 is β2(uA[Σ1].r, Σ.t):

π

∆; ·;Σ ` A | s
∆; ·;Σ ` Eq(A, s, t) | e1
∆,u : A[Σ];Γ2;Σ2 ` C | r

Eqβ2
∆;Γ1,2;Σ1,2 ` Eq(CuΣ.t, r

u
Σ.t, letu : A[Σ] = Σ.t in r) | e2

Eq
∆;Γ1,2;Σ1,2 ` CuΣ.t | letu : A[Σ] = Σ.t in r

Tlk-contraction models audit trail look-up. Consider the following derivation,
where Σ1 ⊆ Σ2, ∆′ ⊆ ∆ and the branch from the depicted instance of Tlk in π1
to its conclusion has no instances of 2I:

α : Eq(A) ∈ Σ1

∆; ·; · ` T B | θw
Tlk

∆;Γ ;Σ1 ` B | αθw
····
π1

∆′; ·;Σ2 ` A | s

π2

∆′; ·;Σ2 ` Eq(A, s, t) | e
2I

∆′;Γ ′;Σ′ ` [[Σ2.t]]A | Σ2.t

The instance of Tlk in π1 is replaced by the following derivation where π′2 is
obtained from π2 by resorting to Lem. 4 and Lem. 1. Also, ∆; ·;Σ2 ` Eq(A, s, t) |
e is obtained from ∆′; ·;Σ2 ` Eq(A, s, t) | e by Lem. 1.

π′2

∆;Γ ;Σ1 ` B | eθw

∆; ·;Σ2 ` Eq(A, s, t) | e
∆; ·; · ` T B | θw

EqTlk
∆;Γ ;Σ1 ` Eq(B, eθw, αθw) | Trl(θw, α)

Eq
∆;Γ ;Σ1 ` B | αθw

As for the permutation conversions, they indicate how Eq is permuted past
any of the inference schemes in {⊃ I,⊃ E,2E,Eq,Tlk}. Also, there is a conversion
that fuses Eq just above the left hypothesis in an instance of 2I with the trail of
the corresponding unit is also coined. As an example Eq permutes past ⊃ I by
replacing:

π1

∆;Γ, a : A;Σ ` B | s

π2

∆;Γ, a : A;Σ ` Eq(B, s, t) | e
Eq

∆;Γ, a : A;Σ ` B | t
⊃ I

∆;Γ ;Σ ` A ⊃ B | λa : A.t



with the following derivation where π3 is a derivation of ∆;Γ ;Σ ` A ⊃ B | λa :
A.s obtained from π1 and ⊃ I:

π3

∆;Γ, a : A;Σ ` Eq(B, s, t) | e
EqAbs

∆;Γ ;Σ ` Eq(A ⊃ B, λa : A.s, λa : A.t) | Abs(aA.e)
Eq

∆;Γ ;Σ ` A ⊃ B | λa : A.t

4 Term Assignment

Computation by normalisation is non-confluent, as one might expect (audit trail
look-up affects computation), hence a strategy is required. This section intro-
duces the call-by-value λh-calculus. It is obtained via a term assignment for JL•.
The syntax of λh terms is:

M ::= a | λa : A.M | MM | 〈u;σ〉 | !Σe M | letu : A[Σ] = M in M |αθ | e�M

In addition to term variables, abstraction and application we also have au-
dited computation unit variables, audited computation units, audited computa-
tion unit substitution, trail look-up and terms decorated with equivalence wit-
nesses. We occasionally drop the type decoration in let construct for readability.
Since terms may be decorated with equivalence witnesses, substitution (both
for truth and validity hypothesis) substitutes free occurrences of variables with
both terms and evidence. We write Ma

N,t for substitution of truth variables and
Mu
Σ.(N,t,e) for substitution of validity variables (similar notions apply to substi-

tution in propositions, evidence and equivalence witnesses). Note that “Σ.” in
Σ.(N, t, e) binds all free occurrences of trail variables from Σ which occur in N ,
t and e. For illustration we give the definition of Mu

Σ.(N,t,e), where suΣ.t traverses

the structure of s replacing 〈u;σ〉uΣ.s with sσ and euΣ.t traverses the structure of

e until it reaches one of Rfl(r1), β(aA.r1, r2) or β2(vA[Σ′].r1, Σ
′.r2) in which case

it resorts to substitution over the ris. Note how the fourth clause of the definition
of Mu

Σ.(N,t,e) below substitutes 〈u;σ〉 with eσ�Nσ, thus propagating the history.

buΣ.(N,t,e)
def
= b

(λb : A.M)uΣ.(N,t,e)
def
= λb : A.Mu

Σ.(N,t,e)

(P Q)uΣ.(N,t,e)
def
= PuΣ.(N,t,e)Q

u
Σ.(N,t,e)

〈u;σ〉uΣ.(N,t,e)
def
= eσ �Nσ

〈v;σ〉uΣ.(N,t,e)
def
= 〈v;σ〉

(!Σ
′

e′ M)
u

Σ.(N,t,e)

def
= !Σ

′

e′u
Σ.t
Mu
Σ.(N,t,e)

(let v = P
def
= let v = PuΣ.(N,t,e)

inQ)uΣ.(N,t,e) inQuΣ.(N,t,e)

(αθ)uΣ.(N,t,e)
def
= α(θuΣ.(N,t,e))

(e′ �M)
u
Σ.(N,t,e)

def
= e′

u
Σ.t �Mu

Σ.(N,t,e)

The typing judgement ∆;Γ ;Σ `M : A | s is defined by means of the typing
schemes obtained from decorating the inference schemes of Fig. 1 with terms.
Sample schemes are given in Fig. 4. A term M is said to be typable if there exists
∆,Γ,Σ,A, s s.t. ∆;Γ ;Σ ` M : A | s is derivable. The operational semantics of
λh is specified by a binary relation over typed terms called reduction (M → N).
In order to define reduction we first introduce two intermediate notions, namely
principle reduction (M 7→ N) and permutation reduction (M y N) . The former
corresponds to principle contraction and the latter to permutation conversions
of the normalisation procedure. The set of evaluation contexts and values are:



∆; ·;Σ `M : A | s
∆; ·;Σ ` Eq(A, s, t) | e

TBox
∆;Γ ;Σ′ `!Σe M : [[Σ.t]]A | Σ.t

α : Eq(A) ∈ Σ
∆; ·; · ` θ : T B | θw

TTlk
∆;Γ ;Σ ` αθ : B | αθw

∆;Γ1;Σ1 `M : [[Σ.r]]A | s
∆, u : A[Σ];Γ2;Σ2 ` N : C | t

TLetB

∆;Γ1,2;Σ1,2 `
letu : A[Σ] = M in N : CuΣ.r

letu : A[Σ] = s in t
|

∆;Γ ;Σ `M : A | s
∆;Γ ;Σ ` Eq(A, s, t) | e

TEq
∆;Γ ;Σ ` e�M : A | t

Fig. 4. Sample typing schemes for λh

E ::= 2 | E M |V E | letu : A[Σ] = E in M
| !Σe E |α{c1/V1, . . . , cj/Vj , cj+1/E , . . .}

F ::= 2 | F M |V F | letu : A[Σ] = F in M

V ::= a | 〈u;σ〉 |λa : A.M
| !Σe V

θV ::= {c1/V1, . . . , c10/V10}

Evaluation contexts are represented with letters E , E ′, etc. Note that reduc-
tion under the audited unit constructor is allowed. Contexts F are required for
defining L, the principle reduction axiom for trail look-up (defined below). It
differs from E by not allowing holes under the audited unit constructor. The set
of values are standard except for !Σe V : audited units with fully evaluated bodies
are also values. θV is a trail replacement consisting entirely of values. Principle
reduction is presented by means of the following principle reduction axiom and
congruence schemes:

(λa : A.M) V ⇀β β(aA.s, t) �Ma
V,t

letu : A[Σ] =!Σe V in N ⇀β2 β2(uA[Σ].t, Σ.s) �Nu
Σ.(V,s,e)

!Σe F [αθV ] ⇀L !Σe F [Trl(θwV , α) � eθV ]

M ⇀ N implies E [M ] 7→ E [N ]7

These schemes have been abridged by removing typing information. For ex-
ample, the fully decorated presentation of β is:

∆;Γ1, a : A;Σ1 `M : B | s ∆;Γ2;Σ2 ` V : A | t

∆;Γ1,2;Σ1,2 ` (λa : A.M) V ⇀β β(aA.s, t) �Ma
V,t : B | (λa : A.s) · t

The fully decorated presentation of β2 is as follows where O
def
= letu : A[Σ] =

!Σe V in N and P
def
= β2(uA[Σ].t, Σ.s) �Nu

Σ.(V,s,e):

∆; ·;Σ ` V : A | r ∆; ·;Σ ` Eq(A, r, s) | e1 ∆,u : A[Σ];Γ2;Σ2 ` N : C | t

∆;Γ1,2;Σ1,2 ` O ⇀β2 P : CuΣ.s | letu : A[Σ] = Σ.s in t

Each principle reduction scheme produces a trail of its execution. Note that
β2 replaces all occurrences of 〈u;σ〉 with eσ�V σ, correctly: (1) preserving trails
and (2) rewiring trail variables so that they now refer to their host audited com-
putation unit. Regarding permutation reduction, the original schemes obtained
from the normalisation procedure are the contextual closure of the first group



(e�M) N y App(e,Rfl(t)) � (M N)
M (e�N) y App(Rfl(t), e) � (M N)

λa : A.(e�M) y Abs(a.e) � (λa : A.M)
letu = (e�M) in N y Let(u.e,Rfl(t)) � (letu = M in N)
letu = M in (e�N) y Let(u.Rfl(s), e) � (letu = M in N)

!Σe2(e1 �M) y !ΣTrn(e1,e2)
M

e1 � (e2 �M) y Trn(e1, e2) �M

Trn(App(e1, e2),App(e3, e4)) y App(Trn(e1, e3),Trn(e2, e4))
Trn(Abs(a.e1),Abs(a.e2)) y Abs(a.Trn(e1, e2))

Trn(Let(u.e1, e2),Let(u.e3, e4)) y Let(u.Trn(e1, e3),Trn(e2, e4))
Trn(Rfl(s), e) y e
Trn(e,Rfl(t)) y e

Trn(Trn(e1, e2), e3) y Trn(e1,Trn(e2, e3))
Trn(App(e1, e2),Trn(App(e3, e4), e5)) y Trn(App(Trn(e1, e3),Trn(e2, e4)), e5)

Trn(Abs(a.e1),Trn(Abs(a.e2), e3)) y Trn(Abs(a.Trn(e1, e2)), e3)
Trn(Let(u.e1, e2),Trn(Let(u.e3, e4), e5)) y Trn(Let(u.Trn(e1, e3),Trn(e2, e4)), e5)

Fig. 5. Permutation reduction schemes

of rules depicted in Fig. 56. As in principle reduction, these schemes operate on
typed terms and have been abridged. Eg. the full presentation of the first is:

∆;Γ1;Σ1 `M : A ⊃ B | r ∆;Γ1;Σ1 ` Eq(A ⊃ B, r, s) | e ∆;Γ2;Σ2 ` N : A | t

∆;Γ1,2;Σ1,2 ` (e�M)N y App(e,Rfl(t)) � (M N) : B | s · t

These schemes are easily proven to be terminating. However, they are not
confluent (take, for instance, the critical pair between the first two reduction
schemes and note that it is not joinable). As a consequence we complete these
schemes with those in the second group depicted in Fig. 5. The full set of schemes
is both confluent and terminating.

Proposition 1. y is confluent and terminating.

Termination may be proved automatically by using AProVE [GTSKF04].
Confluence follows by checking local confluence and resorting to Newman’s
Lemma. We stress that the fact that these reduction schemes are defined over
typed terms is crucial for confluence. For example, Trn(Rfl(s),Rfl(t)) is typable
only in the case that s = t.

Definition 1 (Reduction). Let =⇒ stand for permutation reduction to (the
unique) normal form. Reduction (→) is defined over terms in permutation-
reduction normal form as 7→ ◦ =⇒.

We now address safety of reduction w.r.t. the type system. This involves prov-
ing SR and Progress. SR follows from the fact that the reduction schemes orig-
inate from proof normalisation. The exception are the second group of schemes
of Fig. 5 for which type preservation may also be proved seperately.

6 Type decorations in equivalence witnesses omitted for the sake of readability.



D ::= 2 |λa : A.D |D M |M D
| letu : A[Σ] = D in M
| letu : A[Σ] = M in D | !Σe D | e�D
| α{c1/M1, . . . , cj/Mj , cj+1/D, . . .}

C ::= 2 |λa : A.C | C M |M C
| letu : A[Σ] = C in M
| letu : A[Σ] = M in C
| e� C

(λa : A.M) N
f
⇀β β(aA.s, t) �Ma

N,t

letu : A[Σ] =!Σe M in N
f
⇀β2 β2(uA[Σ].t, Σ.s) �Nu

Σ.(M,s,e)

!Σe C[αθ]
f
⇀L !Σe C[Trl(θw, α) � eθ]

M
f
⇀ N implies D[M ]

f7→ D[N ]

Fig. 6. Full principle reduction

Proposition 2 (Subject Reduction). ∆;Γ ;Σ ` M : A | s and M → N
implies ∆;Γ ;Σ `M : A | s.

Before addressing Progress we introduce some auxiliary notions. A term is
look-up-blocked if it is of the form F [αθV ]. A term M is tv-closed if fvT(M) =
fvV(M) = ∅. It is closed if it is tv-closed and fvTrl(M) = ∅.

Lemma 5 (Canonical forms). Assume ·; ·;Σ ` V : A | s. Then (1) if A =
A1 ⊃ A2, then V = λa : A1.M for some a,M ; and (2) if A = [[Σ′.t]]A1, then
V =!Σ

′

e V ′ for some e, V ′.

Proposition 3. Suppose M is in permutation reduction-normal form, is typable
and tv-closed. Then (1) M is a value or; (2) there exists N s.t. M 7→ N or; (3)
M is look-up-blocked.

Since a closed term cannot be look-up-blocked:

Corollary 1 (Progress). Suppose M is in permutation reduction normal form,
is typable and closed. Then either M is a value or there exists N s.t. M → N .

5 Strong Normalisation

Full reduction is defined as the union of full principle reduction (
f7→, Fig. 6)

and permutation reduction (y). We address strong normalisation (SN) of a
restriction of full reduction, a result which entails SN of a similar restriction of
λh. The restriction consists in requiring that M in the principle reduction axiom
β2 not have occurrences of the audited computation unit constructor “!”. In the

sequel, we write
rf7→ for this restricted notion of reduction.

We first note that
f7→β,β2

is SN. This can be proved by defining a translation
S(•) on λh types that “forget” the modal connective and a similar translation
from terms in λh to terms of the simply typed lambda calculus (with constants)
such that: (1) it preserves typability; and (2) it maps full reduction to reduction
in the simply typed lambda calculus. Since we already know that y is SN and
that reduction in the simply typed lambda calculus is SN, our first result reads:



Proposition 4.
f7→β,β2

∪y is SN.

Therefore, an infinite
f7→ ∪ y reduction sequence must include an infinite

number of
f7→L steps. Next we show that for

rf7→ this is not possible. More precisely,

we show that in an infinite
rf7→ ∪y reduction sequence, there can only be a finite

number of
f7→L steps. This entails:

Proposition 5.
rf7→ ∪y is SN. Hence λh, with the same restriction, is SN.

We now address the proof of the main lemma on which Prop. 5 relies (Lem. 7).
We introduce weight functions which strictly decrease by each application of a
f7→L-step and which decreases with each application of a

rf7→β,β2
-step or y-step.

A word on notation: 〈〈 〉〉 is the empty multiset; ] is multiset union; and n]M is
the union of the multiset 〈〈n〉〉 and M, for n ∈ N. We use the standard multiset
extension ≺ of the well-founded ordering < on natural numbers which is also
well-founded. For each n ∈ N we define Wn(M) as the multiset given by the
following inductive definition on M :

Wn(a)
def
= 〈〈 〉〉

Wn(λa : A.M)
def
= Wn(M)

Wn(M N)
def
= Wn(M) ]Wn(N)

Wn(〈u;σ〉) def
= 〈〈 〉〉

Wn(!Σe M)
def
= n ∗Wt(M)]
]Wn∗Wt(M)(M)

Wn(letu = M in N)
def
= Wn(M) ]Wn(N)

Wn(αθ)
def
=

⊎
i∈1..10Wn(θ(ci))

Wn(e�M)
def
= Wn(M)

where Wt(M) is the number of free trail variables in M plus 1. Note that

Wt(e �M)
def
= Wt(M). The weight functions informally count the number of

trail variables that are available for look-up in audited computation units. The
principle reduction axiom β either erases the argument N or substitutes exactly
one copy, given the affine nature of truth hypothesis. However, multiple copies
of M can arise from β2 reduction (cf. Fig. 6), possibly under “!” constructors
(hence our restriction in item 2 below). Finally, we must take into account that
although an trail variable is consumed by L it also copies the terms in θ (which
may contain occurrences of the “!” constructor). In contrast to β2 however, the
consumed trail variable can be used to make the copies of “!” made by eθ weigh
less than the outermost occurrence of “!” on the left-hand side of L.

Lemma 6. 1. Wn((λa : A.M)N) � Wn(Ma
N,t).

2. If M has no occurrences of the modal term constructor, then Wn(letu :
A[Σ] =!Σe M in N) � Wn(β2(uA[Σ].t, Σ.s) �Nu

Σ.(M,s,e)).

3. Wn(!Σe C[αθ]) � Wn(!Σe C[Trl(θw, α) � eθ]).

From these results follow:

Lemma 7. (1) M
rf7→β,β2

N implies Wn(M) � Wn(N); (2) M
f7→L N implies

Wn(M) � Wn(N); and (3) M y N implies Wn(M) =Wn(N).



6 Example of History Based Access Control

We can also model other phenomena such as Abadi and Fournet’s [AF03] mech-
anism for access control based on execution history. A top-level function decla-
ration is an expression of the form f

.
= M where ∆;Γ ;Σ ` M : A | s together

with a typing scheme (left) and evidence equivalence scheme (right):

TFunc
∆;Γ ;Σ ` f : A | f

∆;Γ ;Σ ` A | s
EqFunc

∆;Γ ;Σ ` Eq(A, s, f) | δf (s)
(1)

Also, we have the principle contraction in which the derivation on the left of
(1) contracts to:

∆;Γ ;Σ `M : A | s

∆;Γ ;Σ ` A | s
EqFunc

∆;Γ ;Σ ` Eq(A, s, f) | δf (s)
Eq

∆;Γ ;Σ `M : A | f

If f
.
=!αe λa : A.M , then we abbreviate letu = f in 〈u;α/β〉N with f βN .

Consider the following top-level declarations:

delete
.
= !

αd
Rfl(q)λa.if FileIOPerm ∈ θαd

thenWin32Delete a
else securityException;

cleanup
.
= !αcRfl(r)λa.delete αc a;

bad
.
= !

αb
Rfl(s)cleanup αb

“..\passwd′′;

where the definition of θ requires we first define perms, a function assigning a set

of (static) permissions to top-level functions: perms(bad)
def
= ∅, perms(cleanup)

def
= {FileIOPerm} and perms(delete)

def
= {FileIOPerm}:

θ(Rfl) = θ(Trl)
def
= ∅

θ(Sym) = θ(Abs)
def
= λa : N.a

θ(Trn) = θ(App) = θ(Let)
def
= λa : N.λb : N.a ∩ b

θ(Rpl)
def
= λa : N.a1 ∩ .. ∩ a10

θ(β) = θ(β2)
def
= ∅

θ(δf )
def
= {perms(f)}

Then evaluation of the term !αRfl(s)bad α will produce a security exception

since δbad(s′) occurs in the trail consulted by delete, for some s′. This term
is based on the first example of Sec.4.1 in [AF03]. The second example of
that same section (illustrating a case where stack inspection falls short and
history based access control has advantages) consists in adding the top-level
declaration badTempFile

.
= “..\passwd′′ and extending perms by declaring

perms(badTempFile)
def
= ∅. Then evaluation of !αRfl(s)delete α badTempFile

will also produce a security exception.

7 Conclusions

We have presented a proof theoretical analysis of a functional computation model
that keeps track of its computation history. A Curry-de Bruijn-Howard isomor-
phism of an affine fragment of Artemov’s Justification Logic yields a lambda
calculus λh which models audited units of computation. Reduction in these units



generates audit trails that are confined within them. Moreover, these units may
look-up these trails and make decisions based on them. We prove type safety for
λh and strong normalisation for a restriction of it. It would be nice to lift the
restriction in the proof of strong normalisation that M in the principle reduction
axiom β2 not have occurrences of the audited computation unit constructor “!”.
Also, it would make sense to study audited computation in a classical setting
where, based on audit trail look-up, the current continuation could be disposed
of in favour of a more judicious computation. Finally, although examples from
the security domain seem promising more are needed in order to better evaluate
the applicability of these ideas.

Acknowledgements. To Peter Thiemann for fruitful discussions.
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